
Barry Burd, PhD, is a professor of mathematics and computer science
at Drew University. He is the author of Android Application Development
All-in-One For Dummies and Java Programming for Android Developers
For Dummies.

Cover image: ©iStockphoto.com/Spanic

Go to Dummies.com®
for videos, step-by-step examples,

how-to articles, or to shop!

 Open the book and find:

•	How to identify the words in a
Java program

•	Plain-English explanations of
Java statements and methods

•	The scoop on programming
with windows, buttons, and
other graphical items

•	Java troubleshooting tips

•	Ways to write several kinds of
decision-making statements

•	How to diagnose loop problems

•	Tips, resources, and all kinds of
interesting goodies

$29.99 USA / $35.99 CAN / £21.99 UK

Computers/Programming Languages/Java

Fully updated to reflect
the new features of Java 8!
If you’re a new programmer, or want to be, this unintimidating
guide gets you on your way toward Java mastery. It explores
what goes into creating a program, how to put the pieces
together, debugging, and making it all work. Even if you’ve
never written a line of code, this book will have you ordering
your computer around in no time.

•	Get	started	—	dive	into	the	overall	programming	experience,	
from	finding	out	what	programming	is	all	about	to	getting	your	
computer	ready	for	writing	and	testing	programs	

•	Jump	into	Java	—	discover	the	basic	building	blocks	in	any	Java	
program,	and	get	up	to	speed	on	how	to	represent	data	and	get	
new	values	from	existing	values	

•	Go	with	the	flow	—	find	out	how	to	look	at	your	program	as	a	
mansion,	and	learn	to	make	your	computer	navigate	from	one	
room	to	another	

•	One	byte	at	a	time	—	learn	the	best	ways	to	break	complex	
programming	problems	into	small	pieces	and	create	solutions	to	
solve	them	

•	The	write	stuff	—	get	access	to	all-important	documents	that	no	
good	Java	programmer	should	be	without	

ISBN 978-1-118-40781-3

9 781118 407813

52999

Burd

4th Edition

Beginning	Program
m
ing	

w
ith	Java

®

Barry Burd, PhD
Author of Java For Dummies®

Learn	to:
•	Use basic development concepts

and techniques with Java

•	Debug Java programs and
create useful code

•	Work with files on your computer’s
hard drive

•	Work with the latest features
of Java 8

Beginning	Programming		

with	Java®

4th	EditionMaking	Everything	Eas
ier!™

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/beginningprogrammingwithjava

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

http://www.dummies.com/cheatsheet/beginningprogrammingwithjava

Beginning Programming
with Java®

4th Edition

Beginning Programming
with Java®

4th Edition

by Barry Burd
Author of Java For Dummies

Beginning Programming with Java® For Dummies®, 4th Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. Java is a registered trademark of Oracle America, Inc. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL,
ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED,
THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT
THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2013954218

ISBN: 978-1-118-40781-3 (pbk); ISBN 978-1-118-41756-0 (ebk); ISBN 978-1-118-46106-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://Dummies.com
http://www.wiley.com

Contents at a Glance
Introduction .. 1

Part I: Getting Started with Java Programming 9
Chapter 1: Getting Started .. 11
Chapter 2: Setting Up Your Computer .. 23
Chapter 3: Running Programs .. 53

Part II: Writing Your Own Java Programs 75
Chapter 4: Exploring the Parts of a Program ... 77
Chapter 5: Composing a Program .. 97
Chapter 6: Using the Building Blocks: Variables, Values, and Types 121
Chapter 7: Numbers and Types ... 135
Chapter 8: Numbers? Who Needs Numbers? ... 153

Part III: Controlling the Flow 175
Chapter 9: Forks in the Road .. 177
Chapter 10: Which Way Did He Go? .. 193
Chapter 11: How to Flick a Virtual Switch .. 217
Chapter 12: Around and Around It Goes... 233
Chapter 13: Piles of Files: Dealing with Information Overload 253
Chapter 14: Creating Loops within Loops .. 273
Chapter 15: The Old Runaround .. 285

Part IV: Using Program Units 309
Chapter 16: Using Loops and Arrays ... 311
Chapter 17: Programming with Objects and Classes .. 333
Chapter 18: Using Methods and Variables from a Java Class 347
Chapter 19: Creating New Java Methods .. 371
Chapter 20: Oooey GUI Was a Worm ... 393

Part V: The Part of Tens ... 423
Chapter 21: Ten Websites for Java .. 425
Chapter 22: Ten Useful Classes in the Java API ... 427

Index .. 431

Table of Contents
Introduction ... 1

About This Book .. 1
How to Use This Book ... 2
Conventions Used in This Book ... 2
What You Don’t Have to Read .. 3
Foolish Assumptions ... 3
How This Book Is Organized .. 4

Part I: Getting Started with Java Programming 4
Part II: Writing Your Own Java Programs ... 4
Part III: Controlling the Flow ... 5
Part IV: Using Program Units .. 5
Part V: The Part of Tens .. 5

Icons Used in This Book ... 5
Beyond the Book ... 6
Where to Go from Here ... 7

Part I: Getting Started with Java Programming 9

Chapter 1: Getting Started . 11
What’s It All About? ... 11

Telling a computer what to do ... 12
Pick your poison .. 13

From Your Mind to the Computer’s Processor ... 14
Translating your code ... 14
Running code .. 15
Code you can use ... 20

Your Java Programming Toolset ... 21
What’s already on your hard drive? .. 22
Eclipse ... 22

Chapter 2: Setting Up Your Computer . 23
If You Don’t Like Reading Instructions 24
Getting This Book’s Sample Programs .. 26
Setting Up Java ... 27

Finding Java on your computer ... 32
Setting Up the Eclipse Integrated Development Environment 38

Downloading Eclipse ... 39
Installing Eclipse .. 40
Running Eclipse for the first time .. 41

What’s Next? ... 51

Beginning Programming with Java For Dummies, 4th Edition viii
Chapter 3: Running Programs . 53

Running a Canned Java Program ... 53
Typing and Running Your Own Code .. 58

Separating your programs from mine ... 59
Writing and running your program ... 60

What’s All That Stuff in Eclipse’s Window? .. 68
Understanding the big picture ... 69
Views, editors, and other stuff ... 70
What’s inside a view or an editor? ... 72
Returning to the big picture ... 74

Part II: Writing Your Own Java Programs 75

Chapter 4: Exploring the Parts of a Program . 77
Checking Out Java Code for the First Time .. 77

Behold! A program! .. 78
What the program’s lines say ... 79

The Elements in a Java Program ... 80
Keywords .. 81
Identifiers that you or I can define .. 83
Identifiers with agreed-upon meanings ... 83
Literals... 84
Punctuation .. 85
Comments ... 87

Understanding a Simple Java Program ... 88
What is a method? ... 88
The main method in a program ... 91
How you finally tell the computer to do something 92
The Java class .. 95

Chapter 5: Composing a Program . 97
Computers Are Stupid ... 98
A Program to Echo Keyboard Input .. 98

Typing and running a program .. 100
How the EchoLine program works .. 103
Getting numbers, words, and other things 104
Type three lines of code and don’t look back 105

Expecting the Unexpected .. 107
Diagnosing a problem.. 108
What problem? I don’t see a problem ... 118

ix Table of Contents

Chapter 6: Using the Building Blocks: Variables,
Values, and Types . 121

Using Variables .. 121
Using a variable .. 122
Understanding assignment statements... 124
To wrap or not to wrap? ... 125

What Do All Those Zeros and Ones Mean? .. 126
Types and declarations ... 127
What’s the point? ... 127

Reading Decimal Numbers from the Keyboard 128
Though these be methods, yet there is madness in ’t 129
Methods and assignments .. 129

Variations on a Theme .. 131
Moving variables from place to place ... 131
Combining variable declarations ... 133

Chapter 7: Numbers and Types . 135
Using Whole Numbers .. 135

Reading whole numbers from the keyboard 137
What you read is what you get... 138

Creating New Values by Applying Operators .. 139
Finding a remainder ... 140
The increment and decrement operators 144
Assignment operators ... 147

Size Matters .. 150

Chapter 8: Numbers? Who Needs Numbers? . 153
Characters .. 154

I digress 155
One character only, please ... 157
Variables and recycling ... 157
When not to reuse a variable ... 159
Reading characters .. 162

The boolean Type .. 164
Expressions and conditions ... 165
Comparing numbers; comparing characters 165

The Remaining Primitive Types ... 173

Part III: Controlling the Flow 175

Chapter 9: Forks in the Road . 177
Decisions, Decisions! ... 177
Making Decisions (Java if Statements) ... 179

Looking carefully at if statements.. 179
A complete program .. 183
Indenting if statements in your code... 185

Beginning Programming with Java For Dummies, 4th Edition x
Variations on the Theme .. 187

 . . . Or else what? ... 187
Packing more stuff into an if statement .. 189
Some handy import declarations... 192

Chapter 10: Which Way Did He Go? . 193
Forming Bigger and Better Conditions ... 193

Combining conditions: An example ... 195
When to initialize? ... 198
More and more conditions ... 199
Using boolean variables .. 201
Mixing different logical operators together 203
Using parentheses ... 205

Building a Nest ... 206
Nested if statements .. 208
Cascading if statements .. 209

Enumerating the Possibilities .. 212
Creating an enum type .. 212
Using an enum type ... 213

Chapter 11: How to Flick a Virtual Switch . 217
Meet the switch Statement ... 217

The cases in a switch statement .. 220
The default in a switch statement ... 221
Picky details about the switch statement 222
To break or not to break ... 225

Using Fall-Through to Your Advantage ... 227
Using a Conditional Operator .. 230

Chapter 12: Around and Around It Goes . 233
Repeating Instructions Over and Over Again

(Java while Statements) .. 234
Following the action in a loop .. 235
No early bailout .. 238

Thinking about Loops (What Statements Go Where) 238
Finding some pieces .. 239
Assembling the pieces... 241
Getting values for variables .. 242
From infinity to affinity ... 243

Thinking about Loops (Priming) ... 245
Working on the problem ... 248
Fixing the problem ... 250

Chapter 13: Piles of Files: Dealing with Information Overload 253
Running a Disk-Oriented Program ... 254

A sample program.. 256
Creating code that messes with your hard drive 258

xi Table of Contents

Running the sample program ... 261
Troubleshooting problems with disk files 264

Writing a Disk-Oriented Program .. 266
Reading from a file ... 268
Writing to a file ... 268

Writing, Rewriting, and Re-rewriting ... 271

Chapter 14: Creating Loops within Loops . 273
Paying Your Old Code a Little Visit ... 274

Reworking some existing code ... 275
Running your code... 276

Creating Useful Code ... 276
Checking for the end of a file .. 277
How it feels to be a computer .. 279
Why the computer accidentally pushes past the

end of the file .. 280
Solving the problem .. 282

Chapter 15: The Old Runaround . 285
Repeating Statements a Certain Number of Times

(Java for Statements) .. 286
The anatomy of a for statement ... 288
Initializing a for loop .. 289

Using Nested for Loops ... 292
Repeating Until You Get What You Need (Java do Statements) 294

Getting a trustworthy response ... 295
Deleting a file .. 297
Using Java’s do statement .. 299
A closer look at the do statement .. 299

Repeating with Predetermined Values
 (Java’s Enhanced for Statement) .. 300

Creating an enhanced for loop ... 301
Nesting the enhanced for loops ... 303

Part IV: Using Program Units 309

Chapter 16: Using Loops and Arrays . 311
Some Loops in Action ... 311

Deciding on a loop’s limit at runtime .. 313
Using all kinds of conditions in a for loop 315

Reader, Meet Arrays; Arrays, Meet the Reader 317
Storing values in an array ... 321
Creating a report .. 322

Working with Arrays ... 324
Looping in Style ... 327
Deleting Several Files .. 329

Beginning Programming with Java For Dummies, 4th Edition xii
Chapter 17: Programming with Objects and Classes 333

Creating a Class ... 334
Reference types and Java classes .. 335
Using a newly defined class .. 335
Running code that straddles two separate files 337
Why bother? ... 337

From Classes Come Objects ... 338
Understanding (or ignoring) the subtleties 340
Making reference to an object’s parts ... 341
Creating several objects ... 341

Another Way to Think about Classes .. 344
Classes, objects, and tables .. 344
Some questions and answers ... 345

Chapter 18: Using Methods and Variables from a Java Class 347
The String Class ... 347

A simple example ... 348
Putting String variables to good use ... 349
Reading and writing strings .. 350

Using an Object’s Methods ... 351
Comparing strings ... 354
The truth about classes and methods .. 355
Calling an object’s methods ... 357
Combining and using data .. 357

Static Methods ... 357
Calling static and non-static methods ... 358
Turning strings into numbers .. 359
Turning numbers into strings .. 361
How the NumberFormat works .. 363
Your country; your currency ... 363

Understanding the Big Picture ... 365
Packages and import declarations .. 365
Shedding light on the static darkness ... 367
Barry makes good on an age-old promise 368

Chapter 19: Creating New Java Methods . 371
Defining a Method within a Class .. 371

Making a method.. 372
Examining the method’s header .. 373
Examining the method’s body.. 374
Calling the method... 375
The flow of control .. 376
Using punctuation .. 377
The versatile plus sign .. 378

Let the Objects Do the Work .. 380

xiii Table of Contents

Passing Values to Methods .. 382
Handing off a value .. 384
Working with a method header.. 385
How the method uses the object’s values 386

Getting a Value from a Method .. 387
An example ... 387
How return types and return values work...................................... 389
Working with the method header (again) 391

Chapter 20: Oooey GUI Was a Worm . 393
The Java Swing Classes ... 394

Showing an image on the screen ... 395
Just another class .. 398

The Swing Classes: Round 2 ... 403
Code Soup: Mixing XML with Java ... 406

Using JavaFX and Scene Builder .. 408
Installing Scene Builder ... 408
Installing e(fx)clipse .. 409
Creating a bare-bones JavaFX project ... 410
Running your bare-bones JavaFX project 411

Adding Stuff to Your JavaFX Project ... 412
Taking Action ... 417

Part V: The Part of Tens .. 423

Chapter 21: Ten Websites for Java . 425
This Book’s Website .. 425
The Horse’s Mouth .. 425
Finding News, Reviews, and Sample Code ... 426
Looking for Java Jobs .. 426
Everyone’s Favorite Sites ... 426

Chapter 22: Ten Useful Classes in the Java API 427
Applet .. 427
ArrayList ... 428
File ... 428
Integer ... 428
Math .. 429
NumberFormat ... 429
Scanner ... 429
String ... 429
StringTokenizer .. 430
System ... 430

Index ... 431

Beginning Programming with Java For Dummies, 4th Edition xiv

Introduction

W
hat’s your story?

 ✓ Are you a working stiff, interested in knowing more about the way your
company’s computers work?

 ✓ Are you a student who needs some extra reading in order to survive a
beginning computer course?

 ✓ Are you a typical computer user — you’ve done lots of word processing,
and you want to do something more interesting with your computer?

 ✓ Are you a job seeker with an interest in entering the fast-paced, glamor-
ous, high-profile world of computer programming (or, at least, the decent-
paying world of computer programming)?

Well, if you want to write computer programs, this book is for you. This book
avoids the snobby “of-course-you-already-know” assumptions and describes
computer programming from scratch.

About This Book
The book uses Java — a powerful, general-purpose computer programming
language. But Java’s subtleties and eccentricities aren’t the book’s main focus.
Instead, this book emphasizes a process — the process of creating instruc-
tions for a computer to follow. Many highfalutin’ books describe the mechan-
ics of this process — the rules, the conventions, and the formalisms. But those
other books aren’t written for real people. Those books don’t take you from
where you are to where you want to be.

In this book, I assume very little about your experience with computers. As
you read each section, you get to see inside my head. You see the problems
that I face, the things that I think, and the solutions that I find. Some problems
are the kind that I remember facing when I was a novice; other problems are
the kind that I face as an expert. I help you understand, I help you visualize,
and I help you create solutions on your own. I even get to tell a few funny
stories.

2 Beginning Programming with Java For Dummies, 4th Edition

How to Use This Book
I wish I could say, “Open to a random page of this book and start writing Java
code. Just fill in the blanks and don’t look back.” In a sense, this is true. You
can’t break anything by writing Java code, so you’re always free to experiment.

But I have to be honest. If you don’t understand the bigger picture, writing a pro-
gram is difficult. That’s true with any computer programming language — not
just Java. If you’re typing code without knowing what it’s about, and the code
doesn’t do exactly what you want it to do, then you’re just plain stuck.

So in this book, I divide programming into manageable chunks. Each chunk
is (more or less) a chapter. You can jump in anywhere you want — Chapter 5,
Chapter 10, or wherever. You can even start by poking around in the middle
of a chapter. I’ve tried to make the examples interesting without making one
chapter depend on another. When I use an important idea from another chap-
ter, I include a note to help you find your way around.

In general, my advice is as follows:

 ✓ If you already know something, don’t bother reading about it.

 ✓ If you’re curious, don’t be afraid to skip ahead. You can always sneak a
peek at an earlier chapter if you really need to do so.

Conventions Used in This Book
Almost every technical book starts with a little typeface legend, and Beginning
Programming with Java For Dummies, 4th Edition is no exception. What follows
is a brief explanation of the typefaces used in this book:

 ✓ New terms are set in italics.

 ✓ When I want you to type something short or perform a step, I use bold.

 ✓ You’ll also see this computerese font. I use the computerese font for
Java code, filenames, web page addresses (URLs), onscreen messages,
and other such things. Also, if something you need to type is really long,
it appears in computerese font on its own line (or lines).

 ✓ You need to change certain things when you type them on your own
computer keyboard. For example, I may ask you to type

class Anyname

 which means you should type class and then some name that you make
up on your own. Words that you need to replace with your own words
are set in italicized computerese.

3 Introduction

What You Don’t Have to Read
Pick the first chapter or section that has material you don’t already know and
start reading there. Of course, you may hate making decisions as much as
I do. If so, here are some guidelines you can follow:

 ✓ If you already know what computer programming is all about, skip the
first half of Chapter 1. Believe me, I won’t mind.

 ✓ If you’re required to use a development environment other than Eclipse,
you can skip Chapter 2. This applies if you plan to use NetBeans, IntelliJ
IDEA, or a number of other development environments.

 Most of this book’s examples require Java 5.0 or later, and some of the
examples require Java 7 or later. So make sure that your system uses
Java 7 or later. If you’re not sure about your computer’s Java version or
if you have leeway in choosing a development environment, your safest
move is to read Chapter 3.

 ✓ If you’ve already done a little computer programming, be prepared to
skim Chapters 6 through 8. Dive fully into Chapter 9 and see whether it
feels comfortable. (If so, then read on. If not, re-skim Chapters 6, 7, and 8.)

 ✓ If you feel comfortable writing programs in a language other than Java,
this book isn’t for you. Keep this book as a memento and buy my Java
For Dummies, 6th Edition, also published by John Wiley & Sons, Inc.

If you want to skip the sidebars and the Technical Stuff icons, please do. In
fact, if you want to skip anything at all, feel free.

Foolish Assumptions
In this book, I make a few assumptions about you, the reader. If one of these
assumptions is incorrect, you’re probably okay. If all these assumptions are
incorrect . . . well, buy the book anyway.

 ✓ I assume that you have access to a computer. Here’s good news. You
can run the code in this book on almost any computer. The only comput-
ers you can’t use to run this code are ancient things that are more than
eight years old (give or take a few years). You can run the latest version
of Java on Windows, Macintosh, and Linux computers.

 ✓ I assume that you can navigate through your computer’s common
menus and dialog boxes. You don’t have to be a Windows, Linux, or
Macintosh power user, but you should be able to start a program, find a
file, put a file into a certain directory . . . that sort of thing. Most of the
time, when you practice the stuff in this book, you’re typing code on
your keyboard, not pointing and clicking your mouse.

4 Beginning Programming with Java For Dummies, 4th Edition

 On those rare occasions when you need to drag and drop, cut and paste,
or plug and play, I guide you carefully through the steps. But your com-
puter may be configured in any of several billion ways, and my instruc-
tions may not quite fit your special situation. So when you reach one of
these platform-specific tasks, try following the steps in this book. If the
steps don’t quite fit, send me an e-mail message, or consult a book with
instructions tailored to your system.

 ✓ I assume that you can think logically. That’s all there is to computer
programming — thinking logically. If you can think logically, you’ve got it
made. If you don’t believe that you can think logically, read on. You may
be pleasantly surprised.

 ✓ I assume that you know little or nothing about computer programming.
This isn’t one of those “all things to all people” books. I don’t please the
novice while I tease the expert. I aim this book specifically toward the
novice — the person who has never programmed a computer or has never
felt comfortable programming a computer. If you’re one of these people,
you’re reading the right book.

How This Book Is Organized
This book is divided into subsections, which are grouped into sections, which
come together to make chapters, which are lumped finally into five parts.
(When you write a book, you get to know your book’s structure pretty well.
After months of writing, you find yourself dreaming in sections and chapters
when you go to bed at night.) The parts of the book are listed here.

Part I: Getting Started with
Java Programming
The chapters in Part I prepare you for the overall programming experience.
In these chapters, you find out what programming is all about and get your
computer ready for writing and testing programs.

Part II: Writing Your Own Java Programs
This part covers the basic building blocks — the elements in any Java pro-
gram and in any program written using a Java-like language. In this part, you
discover how to represent data and how to get new values from existing
values. The program examples are short, but cute.

5 Introduction

Part III: Controlling the Flow
Part III has some of my favorite chapters. In these chapters, you make the
computer navigate from one part of your program to another. Think of your
program as a big mansion, with the computer moving from room to room.
Sometimes the computer chooses between two or more hallways, and some-
times the computer revisits rooms. As a programmer, your job is to plan the
computer’s rounds through the mansion. It’s great fun.

Part IV: Using Program Units
Have you ever solved a big problem by breaking it into smaller, more manage-
able pieces? That’s exactly what you do in Part IV of this book. You discover
the best ways to break programming problems into pieces and to create solu-
tions for the newly found pieces. You also find out how to use other peoples’
solutions. It feels like stealing, but it’s not.

This part also contains a chapter about programming with windows, buttons,
and other graphical items. If your mouse feels ignored by the examples in this
book, read Chapter 20.

Part V: The Part of Tens
The Part of Tens is a little beginning programmer’s candy store. In the Part of
Tens, you can find lists — lists of tips, resources, and all kinds of interesting
goodies.

I added an article at www.dummies.com/extras/beginningprogramming
withjava to help you feel comfortable with Java’s documentation. I can’t write
programs without my Java programming documentation. In fact, no Java pro-
grammer can write programs without those all-important docs. These docs are
in web page format, so they’re easy to find and easy to navigate. But if you’re
not used to all the terminology, the documentation can be overwhelming.

Icons Used in This Book
If you could watch me write this book, you’d see me sitting at my computer,
talking to myself. I say each sentence several times in my head. When I have
an extra thought, a side comment, something that doesn’t belong in the regu-
lar stream, I twist my head a little bit. That way, whoever’s listening to me
(usually nobody) knows that I’m off on a momentary tangent.

http://www.dummies.com/extras/beginningprogrammingwithjava
http://www.dummies.com/extras/beginningprogrammingwithjava

6 Beginning Programming with Java For Dummies, 4th Edition

Of course, in print, you can’t see me twisting my head. I need some other way
of setting a side thought in a corner by itself. I do it with icons. When you see
a Tip icon or a Remember icon, you know that I’m taking a quick detour.

Here’s a list of icons that I use in this book:

 A tip is an extra piece of information — something helpful that the other books
may forget to tell you.

 Everyone makes mistakes. Heaven knows that I’ve made a few in my time.
Anyway, when I think of a mistake that people are especially prone to make,
I write about the mistake in a Warning icon.

 Sometimes I want to hire a skywriting airplane crew. “Barry,” says the white
smoky cloud, “if you want to compare two numbers, use the double equal sign.
Please don’t forget to do this.” Because I can’t afford skywriting, I have to settle
for something more modest. I create a Remember icon.

 Occasionally, I run across a technical tidbit. The tidbit may help you under-
stand what the people behind the scenes (the people who developed Java)
were thinking. You don’t have to read it, but you may find it useful. You may
also find the tidbit helpful if you plan to read other (more geeky) books
about Java.

 This icon calls attention to useful material that you can find online. (You
don’t have to wait long to see one of these icons. I use one at the end of this
introduction!)

Beyond the Book
I’ve written a lot of extra content that you won’t find in this book. Go online
to find the following:

 ✓ Cheat Sheet: Check out www.dummies.com/cheatsheet/beginning
programmingwithjava.

 ✓ Online Articles: On several of the pages that open each of this book’s
parts, you can find links to what the folks at For Dummies call Web
Extras, which expand on some concept I’ve discussed in that particular
section. You can find all such extras bundled together at www.dummies.
com/extras/beginningprogrammingwithjava.

http://www.dummies.com/cheatsheet/beginningprogrammingwithjava
http://www.dummies.com/cheatsheet/beginningprogrammingwithjava
http://www.dummies.com/extras/beginningprogrammingwithjava
http://www.dummies.com/extras/beginningprogrammingwithjava

7 Introduction

Where to Go from Here
If you’ve gotten this far, you’re ready to start reading about computer pro-
gramming. Think of me (the author) as your guide, your host, your personal
assistant. I do everything I can to keep things interesting and, most impor-
tantly, help you understand.

 If you like what you read, send me an e-mail, post on my Facebook wall, or
tweet me a tweet. My e-mail address, which I created just for comments and
questions about this book, is BeginProg@allmycode.com. My Facebook
page is /allmycode, and my Twitter handle is @allmycode. And don’t forget —
to get the latest information, visit one of this book’s support websites. Mine is
at http://allmycode.com/BeginProg, or you can visit www.dummies.
com/go/beginningprogrammingwithjavafd.

Occasionally, we have updates to our technology books. If this book does have
technical updates, they will be posted at www.dummies.com/go/ beginning
programmingwithjavafdupdates and at http://allmycode.com/
BeginProg.

http://allmycode.com/beginprog
http://www.dummies.com/go/beginningprogrammingwithjavafd
http://www.dummies.com/go/beginningprogrammingwithjavafd
http://www.dummies.com/go/beginningprogrammingwithjavafdupdates
http://www.dummies.com/go/beginningprogrammingwithjavafdupdates
http://allmycode.com/beginprog
http://allmycode.com/beginprog

8 Beginning Programming with Java For Dummies, 4th Edition

Part I
Getting Started with

Java Programming

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part . . .
 ✓ Getting psyched up to be a Java developer

 ✓ Installing the software

 ✓ Running some sample programs

Chapter 1

Getting Star ted
In This Chapter
▶ Realizing what computer programming is all about

▶ Understanding the software that enables you to write programs

▶ Revving up to use an integrated development environment

C
omputer programming? What’s that? Is it technical? Does it hurt? Is it
politically correct? Does Bill Gates control it? Why would anyone want

to do it? And what about me? Can I learn to do it?

What’s It All About?
You’ve probably used a computer to do word processing. Type a letter, print
it, and then send the printout to someone you love. If you have easy access
to a computer, then you’ve probably surfed the web. Visit a page, click a link,
and see another page. It’s easy, right?

Well, it’s easy only because someone told the computer exactly what to do.
If you take a computer right from the factory and give no instructions to this
computer, the computer can’t do word processing, it can’t surf the web, and it
can’t do anything. All a computer can do is follow the instructions that people
give to it.

Now imagine that you’re using Microsoft Word to write the great American
novel, and you come to the end of a line. (You’re not at the end of a sentence;
just the end of a line.) As you type the next word, the computer’s cursor
jumps automatically to the next line of type. What’s going on here?

Well, someone wrote a computer program — a set of instructions telling the
computer what to do. Another name for a program (or part of a program) is
code. Listing 1-1 shows you what some of Microsoft Word’s code may look like.

12 Part I: Getting Started with Java Programming

Listing 1-1: A Few Lines in a Computer Program

if (columnNumber > 60) {
 wrapToNextLine();
} else {
 continueSameLine();
}

If you translate Listing 1-1 into plain English, you get something like this:

If the column number is greater than 60,
 then go to the next line.
Otherwise (if the column number isn't greater than 60),
 then stay on the same line.

Somebody has to write code of the kind shown in Listing 1-1. This code, along
with millions of other lines of code, makes up the program called Microsoft
Word.

And what about web surfing? You click a link that’s supposed to take you
directly to Yahoo.com. Behind the scenes, someone has written code of the
following kind:

Go to Yahoo.

One way or another, someone has to write a program. That someone is called
a programmer.

Telling a computer what to do
Everything you do with a computer involves gobs and gobs of code. For exam-
ple, every computer game is really a big (make that “very big!”) bunch of com-
puter code. At some point, someone had to write the game program:

if (person.touches(goldenRing)) {
 person.getPoints(10);
}

Without a doubt, the people who write programs have valuable skills. These
people have two important qualities:

 ✓ They know how to break big problems into smaller step-by-step
procedures.

 ✓ They can express these steps in a very precise language.

13 Chapter 1: Getting Started

A language for writing steps is called a programming language, and Java is just
one of several thousand useful programming languages. The stuff in Listing 1-1
is written in the Java programming language.

Pick your poison
This book isn’t about the differences among programming languages, but you
should see code in some other languages so you understand the bigger pic-
ture. For example, there’s another language, Visual Basic, whose code looks
a bit different from code written in Java. An excerpt from a Visual Basic pro-
gram may look like this:

If columnNumber > 60 Then
 Call wrapToNextLine
Else
 Call continueSameLine
End If

The Visual Basic code looks more like ordinary English than the Java code in
Listing 1-1. But, if you think that Visual Basic is like English, then just look at
some code written in COBOL:

IF COLUMN-NUMBER IS GREATER THAN 60 THEN
 PERFORM WRAP-TO-NEXT-LINE
ELSE
 PERFORM CONTINUE-SAME-LINE
END-IF.

At the other end of the spectrum, you find languages like Haskell. Here’s a
short Haskell program, along with the program’s input and output:

median aList =
 [x | x <- aList,
 length([y | y <- aList, y < x]) ==
 length([y | y <- aList, y > x])]
*Main> median [4,7,2,1,0,9,6]
[4]

Computer languages can be very different from one another, but in some ways,
they’re all the same. When you get used to writing IF COLUMN-NUMBER IS
GREATER THAN 60, you can also become comfortable writing if (column
Number > 60). It’s just a mental substitution of one set of symbols for another.
Eventually, writing things like if (columnNumber > 60) becomes second
nature.

14 Part I: Getting Started with Java Programming

From Your Mind to the
Computer’s Processor

When you create a new computer program, you go through a multistep process.
The process involves three important tools:

 ✓ Compiler: A compiler translates your code into computer-friendly (human-
unfriendly) instructions.

 ✓ Virtual machine: A virtual machine steps through the computer-friendly
instructions.

 ✓ Application programming interface: An application programming inter-
face contains useful prewritten code.

The next three sections describe each of the three tools.

Translating your code
You may have heard that computers deal with zeros and ones. That’s cer-
tainly true, but what does it mean? Well, for starters, computer circuits don’t
deal directly with letters of the alphabet. When you see the word Start on
your computer screen, the computer stores the word internally as 01010011
01110100 01100001 01110010 01110100. That feeling you get of seeing
a friendly looking five-letter word is your interpretation of the computer
screen’s pixels, and nothing more. Computers break everything down into
very low-level, unfriendly sequences of zeros and ones and then put things
back together so that humans can deal with the results.

So what happens when you write a computer program? Well, the program has
to get translated into zeros and ones. The official name for the translation
process is compilation. Without compilation, the computer can’t run your
program.

I compiled the code in Listing 1-1. Then I did some harmless hacking to
help me see the resulting zeros and ones. What I saw was the mishmash in
Figure 1-1.

The compiled mumbo jumbo in Figure 1-1 goes by many different names:

 ✓ Most Java programmers call it bytecode.

 ✓ I often call it a .class file. That’s because, in Java, the bytecode gets stored
in files named SomethingOrOther.class.

 ✓ To emphasize the difference, Java programmers call Listing 1-1 the source
code and refer to the zeros and ones in Figure 1-1 as object code.

15 Chapter 1: Getting Started

Figure 1-1:
My

computer
understands
these zeros

and ones,
but I don’t.

To visualize the relationship between source code and object code, see
Figure 1-2. You can write source code and then get the computer to create
object code from your source code. To create object code, the computer
uses a special software tool called a compiler.

Figure 1-2:
The

computer
compiles

source code
to create

object code.

 Your computer’s hard drive may have a file named javac or javac.exe. This
file contains that special software tool — the compiler. (Hey, how about that?
The word javac stands for “Java compiler!”) As a Java programmer, you often
tell your computer to build some new object code. Your computer fulfills this
wish by going behind the scenes and running the instructions in the javac file.

Running code
Several years ago, I spent a week in Copenhagen. I hung out with a friend who
spoke both Danish and English fluently. As we chatted in the public park, I
vaguely noticed some kids orbiting around us. I don’t speak a word of Danish,
so I assumed that the kids were talking about ordinary kid stuff.

16 Part I: Getting Started with Java Programming

What is bytecode, anyway?
Look at Listing 1-1 and at the listing’s transla-
tion into bytecode in Figure 1-1. You may be
tempted to think that a bytecode file is just a
cryptogram — substituting zeros and ones for
the letters in words like if and else. But it
doesn’t work that way at all. In fact, the most
important part of a bytecode file is the encoding
of a program’s logic.

The zeros and ones in Figure 1-1 describe the
flow of data from one part of your computer to
another. I illustrate this flow in the following
figure. But remember, this figure is just an illus-
tration. Your computer doesn’t look at this par-
ticular figure, or at anything like it. Instead, your
computer reads a bunch of zeros and ones to
decide what to do next.

Don’t bother to absorb the details in my attempt
at graphical representation in the figure. It’s not
worth your time. The thing you should glean
from my mix of text, boxes, and arrows is that
bytecode (the stuff in a .class file) contains
a complete description of the operations that
the computer is to perform. When you write a

computer program, your source code describes
an overall strategy — a big picture. The com-
piled bytecode turns the overall strategy into
hundreds of tiny, step-by-step details. When the
computer “runs your program,” the computer
examines this bytecode and carries out each of
the little step-by-step details.

17 Chapter 1: Getting Started

Then my friend told me that the kids weren’t speaking Danish. “What language
are they speaking?” I asked.

“They’re talking gibberish,” she said. “It’s just nonsense syllables. They don’t
understand English, so they’re imitating you.”

Now to return to present-day matters. I look at the stuff in Figure 1-1, and I’m
tempted to make fun of the way my computer talks. But then I’d be just like
the kids in Copenhagen. What’s meaningless to me can make perfect sense to
my computer. When the zeros and ones in Figure 1-1 percolate through my
computer’s circuits, the computer “thinks” the thoughts shown in Figure 1-3.

Figure 1-3:
What the
computer

gleans from
a bytecode

file.

Everyone knows that computers don’t think, but a computer can carry out
the instructions depicted in Figure 1-3. With many programming languages
(languages like C++ and COBOL, for example), a computer does exactly what
I’m describing. A computer gobbles up some object code and does whatever
the object code says to do.

18 Part I: Getting Started with Java Programming

That’s how it works in many programming languages, but that’s not how it
works in Java. With Java, the computer executes a different set of instructions.
The computer executes instructions like the ones in Figure 1-4.

Figure 1-4:
How a

computer
runs a Java

program.

The instructions in Figure 1-4 tell the computer how to follow other instruc-
tions. Instead of starting with Get columnNumber from memory, the comput-
er’s first instruction is, “Do what it says to do in the bytecode file.” (Of course,
in the bytecode file, the first instruction happens to be Get columnNumber
from memory.)

There’s a special piece of software that carries out the instructions in Figure 1-4.
That special piece of software is called the Java Virtual Machine (JVM). The JVM
walks your computer through the execution of some bytecode instructions.
When you run a Java program, your computer is really running the JVM. That
JVM examines your bytecode, zero by zero, one by one, and carries out the
instructions described in the bytecode.

Many good metaphors can describe the JVM. Think of the JVM as a proxy, an
errand boy, a go-between. One way or another, you have the situation shown
in Figure 1-5. On the (a) side is the story you get with most programming
languages — the computer runs some object code. On the (b) side is the story
with Java — the computer runs the JVM, and the JVM follows the bytecode’s
instructions.

19 Chapter 1: Getting Started

Figure 1-5:
Two ways

to run a
computer
program.

 Your computer’s hard drive may have files named javac and java (or
javac.exe and java.exe). A java (or java.exe) file contains the instruc-
tions illustrated previously in Figure 1-4 — the instructions in the JVM. As
a Java programmer, you often tell your computer to run a Java program.
Your computer fulfills this wish by going behind the scenes and running the
instructions in the java file.

Write once, run anywhere
When Java first hit the tech scene in 1995, the
language became popular almost immediately.
This happened in part because of the JVM.
The JVM is like a foreign language interpreter,
turning Java bytecode into whatever native lan-
guage a particular computer understands. So if
you hand my Windows computer a Java byte-
code file, then the computer’s JVM interprets the
file for the Windows environment. If you hand
the same Java bytecode file to my colleague’s
Macintosh, then the Macintosh JVM interprets
that same bytecode for the Mac environment.

Look again at Figure 1-5. Without a virtual
machine, you need a different kind of object

code for each operating system. But with the
JVM, just one piece of bytecode works on
Windows machines, Unix boxes, Macs, or
whatever. This is called portability, and in the
computer-programming world, portability is a
very precious commodity. Think about all the
people using computers to browse the Internet.
These people don’t all run Microsoft Windows,
but each person’s computer can have its own
bytecode interpreter — its own JVM.

The marketing folks at Oracle call it the Write
Once, Run Anywhere model of computing. I call
it a great way to create software.

20 Part I: Getting Started with Java Programming

Code you can use
During the early 1980s, my cousin-in-law Chris worked for a computer soft-
ware firm. The firm wrote code for word-processing machines. (At the time,
if you wanted to compose documents without a typewriter, you bought a
“computer” that did nothing but word processing.) Chris complained about
being asked to write the same old code over and over again. “First, I write
a search-and-replace program. Then I write a spell checker. Then I write
another search-and-replace program. Then, a different kind of spell checker.
And then, a better search-and-replace.”

How did Chris manage to stay interested in his work? And how did Chris’s
employer manage to stay in business? Every few months, Chris had to rein-
vent the wheel. Toss out the old search-and-replace program and write a new
program from scratch. That’s inefficient. What’s worse, it’s boring.

For years, computer professionals were seeking the Holy Grail — a way to
write software so that it’s easy to reuse. Don’t write and rewrite your search-
and-replace code. Just break the task into tiny pieces. One piece searches
for a single character, another piece looks for blank spaces, and a third piece
substitutes one letter for another. When you have all the pieces, just assem-
ble these pieces to form a search-and-replace program. Later on, when you
think of a new feature for your word-processing software, you reassemble the
pieces in a slightly different way. It’s sensible, it’s cost efficient, and it’s much
more fun.

The late 1980s saw several advances in software development, and by the
early 1990s, many large programming projects were being written from prefab
components. Java came along in 1995, so it was natural for the language’s
founders to create a library of reusable code. The library included about
250 programs, including code for dealing with disk files, code for creating
windows, and code for passing information over the Internet. Since 1995, this
library has grown to include more than 4,000 programs. This library is called
the Application Programming Interface (API).

Every Java program, even the simplest one, calls on code in the Java API.
This Java API is both useful and formidable. It’s useful because of all the
things you can do with the API’s programs. It’s formidable because the API is
so extensive. No one memorizes all the features made available by the Java
API. Programmers remember the features that they use often and look up the
features that they need in a pinch. They look up these features in an online
document called the API Specification (known affectionately to most Java pro-
grammers as the API documentation, or the Javadocs).

21 Chapter 1: Getting Started

The API documentation (see http://docs.oracle.com/javase/8/
docs/api/) describes the thousands of features in the Java API. As a Java
programmer, you consult this API documentation on a daily basis. You can
bookmark the documentation at the Oracle website and revisit the site when-
ever you need to look up something, or you can save time by downloading
your own copy of the API docs using the links found at www.oracle.com/
technetwork/java/javase/downloads/index.html.

Your Java Programming Toolset
To write Java programs, you need the tools described previously in this
chapter:

 ✓ You need a Java compiler. (Refer to the section “Translating your code.”)

 ✓ You need a JVM. (Refer to the section “Running code.”)

 ✓ You need the Java API. (Refer to the section “Code you can use.”)

 ✓ You need access to the Java API documentation. (Again, refer to the
“Code you can use” section.)

You also need some less exotic tools:

 ✓ You need an editor to compose your Java programs. Listing 1-1 contains
part of a computer program. When you come right down to it, a computer
program is a big bunch of text. So to write a computer program, you need
an editor — a tool for creating text documents.

 An editor is a lot like Microsoft Word, or like any other word-processing
program. The big difference is that an editor adds no formatting to your
text — no bold, italic, or distinctions among fonts. Computer programs
have no formatting whatsoever. They have nothing except plain old letters,
numbers, and other familiar keyboard characters.

 When you edit a program, you may see bold text, italic text, and text in
several colors. But your program contains none of this formatting. If you
see stuff that looks like formatting, it’s because the editor that you’re using
does syntax highlighting. With syntax highlighting, an editor makes the text
appear to be formatted in order to help you understand the structure of
your program. Believe me, syntax highlighting is very helpful.

 ✓ You need a way to issue commands. You need a way to say things like
“compile this program” and “run the JVM.” Every computer provides
ways of issuing commands. (You can double-click icons or type verbose
commands in a Run dialog box.) But when you use your computer’s facili-
ties, you jump from one window to another. You open one window to read
Java documentation, another window to edit a Java program, and a third
window to start up the Java compiler. The process can be very tedious.

http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

22 Part I: Getting Started with Java Programming

In the best of all possible worlds, you do all your program editing, documen-
tation reading, and command issuing through one nice interface. This inter-
face is called an integrated development environment (IDE).

A typical IDE divides your screen’s work area into several panes — one pane
for editing programs, another pane for listing the names of programs, a third
pane for issuing commands, and other panes to help you compose and test
programs. You can arrange the panes for quick access. Better yet, if you change
the information in one pane, the IDE automatically updates the information in
all the other panes.

An IDE helps you move seamlessly from one part of the programming endeavor
to another. With an IDE, you don’t have to worry about the mechanics of edit-
ing, compiling, and running a JVM. Instead, you can worry about the logic of
writing programs. (Wouldn’t you know it? One way or another, you always have
something to worry about!)

What’s already on your hard drive?
You may already have some of the tools you need for creating Java programs.
But, on an older computer, your tools may be obsolete. Most of this book’s
examples run on all versions of Java. But some examples don’t run on versions
earlier than Java 5.0. Other examples run only on Java 6, Java 7, Java 8, or later.

The safest bet is to download tools afresh from java.com or from the Oracle
website. To get detailed instructions on doing the download, see Chapter 2.

Eclipse
The programs in this book work with any IDE that can run Java. This includes
IDEs such as NetBeans, IntelliJ IDEA, JDeveloper, JCreator, and others. You
can even run the programs without an IDE. But to illustrate the examples in
this book, I use the Eclipse IDE. I chose Eclipse over other IDEs for several
reasons:

 ✓ Eclipse is free.

 ✓ Among all the Java IDEs, Eclipse is the one most commonly used by pro-
fessional programmers.

 ✓ Eclipse has many bells and whistles, but you can ignore most of them
and learn to repeat a few routine sequences of steps. After using Eclipse
a few times, your brain automatically performs the routine steps. From
then on, you can stop worrying about Eclipse and concentrate on Java
programming.

 ✓ Eclipse is free. (It’s worth mentioning twice.)

Chapter 2

Set ting Up Your Computer
In This Chapter
▶ Installing Java

▶ Downloading and installing the Eclipse integrated development environment

▶ Checking your Eclipse configuration

▶ Getting the code in this book’s examples

T
his book tells you how to write Java programs, and before you can write
Java programs, you need some software. At the very least, you need the

software that I describe in Chapter 1 — a Java compiler and a Java Virtual
Machine (JVM, for short). You can also use a good integrated development
environment (IDE) and some sample code to get you started.

All the software you need for writing Java programs is free. The software comes
as three downloads — one from this book’s website, another from Oracle, and
a third from eclipse.org.

 The Oracle and Eclipse websites that I describe in this chapter are always
changing. The software that you download from these sites changes, too. A spe-
cific instruction such as “click the button in the upper-right corner” becomes
obsolete (and even misleading) in no time at all. So in this chapter, I provide
long lists of steps, but I also describe the ideas behind the steps. Browse each
of the suggested sites and look for ways to get the software that I describe.
When a website offers you several options, check the instructions in this chap-
ter for hints on choosing the best option. If your computer’s Eclipse window
doesn’t look quite like the window in this chapter’s figures, scan your com-
puter’s window for whatever options I describe. If, after all that, you can’t find
what you’re looking for, check this book’s website (http://allmycode.com/
BeginProg) or send an e-mail to me at BeginProg@allmycode.com. You
can also find me on Facebook at /allmycode or on Twitter at @allmycode.

http://allmycode.com/beginprog
http://allmycode.com/beginprog

24 Part I: Getting Started with Java Programming

If You Don’t Like Reading
Instructions . . .

I start this chapter with a very brief (but useful) overview of the steps required
to get the software you need. If you’re an old hand at installing software, and if
your computer isn’t quirky, these steps will probably serve you well. If not, you
can read the more detailed instructions in the next several sections.

Here’s how you get the software for creating Java programs:

 1. Visit http://allmycode.com/BeginProg and download a file con-
taining all the program examples in this book.

 2. Visit www.oracle.com/technetwork/java/javase/downloads
and get the latest available version of the JDK.

 Choose a version of the software that matches your operating system
(Windows, Macintosh, or whatever). If you have trouble choosing between
32-bit software and 64-bit software, the 32-bit versions are safer choices. If
you have trouble choosing between the JRE and the JDK, pick the JDK.

 If you’re in a hurry (and who isn’t?), you may benefit from a quick visit to
http://java.com. The http://java.com website offers a hassle-free,
one-click Java installer. (Simply click a big Java Download button. You can’t
miss it.) The Java Download button doesn’t work on all computers. But if
it works for you, with a wave of a virtual magic wand, you’re finished with
this step. You can bypass the complexities of the oracle.com website
and move immediately to Step 3.

 3. Visit http://eclipse.org/downloads and get the Eclipse IDE.

 Select the Eclipse IDE For Java Developers. The resulting download is a
compressed archive file (for Windows, a .zip file; for other operating
systems, including Macintosh OS X, a .tar.gz file).

 4. Extract the contents of the downloaded Eclipse archive.

 The archive contains a folder named eclipse. Extract this eclipse
folder to a handy place in your computer’s hard drive. For example, on
my Windows computer, I have a C:\eclipse folder. On my Mac, I have
an eclipse folder inside my Applications folder.

 In Windows, the blank space in the name Program Files confuses some
Java software. I don’t think any of this book’s software presents such a
problem, but I can’t guarantee it. So if you want, extract Eclipse to your
C:\Program Files or C:\Program Files (x86) folder. But make a
mental note about your choice (in case you run into any trouble later).

http://allmycode.com/beginprog
http://www.oracle.com/technetwork/java/javase/downloads
http://java.com
http://java.com
oracle.com
http://eclipse.org/downloads

25 Chapter 2: Setting Up Your Computer

 5. Launch Eclipse and click the Welcome screen’s Workbench icon.

 Initially, the Welcome screen’s icons have no text labels. But when you
hover over an icon, a tooltip appears. Select the icon whose tooltip has
the title Workbench.

 6. In Eclipse, import the code that you downloaded in Step 1.

For details about any of this stuff, see the next several sections.

Those pesky filename extensions
The filenames displayed in Windows File
Explorer or in a Finder window can be mislead-
ing. You may browse one of your directories and
see the name Mortgage. The file’s real name
might be Mortgage.java, Mortgage.
class, Mortgage.somethingElse, or
plain old Mortgage. Filename endings like
.zip, .java, and .class are called file-
name extensions.

The ugly truth is that, by default, Windows and
Macs hide many filename extensions. This
awful feature tends to confuse programmers.
So, if you don’t want to be confused, change
your computer’s system-wide settings. Here’s
how you do it:

 ✓ In Windows XP: Choose Start➪Control
Panel➪Appearance and Themes➪Folder
Options. Then follow the instructions in the
In All Versions of Windows bullet.

 ✓ In Windows 7: Choose Start➪Control
Panel➪Appearance and Personalization➪
Folder Options. Then follow the instruc-
tions in the In All Versions of Windows
bullet.

 ✓ In Windows 8: In the Start screen, hold
down the Windows key while pressing Q.

In the resulting search box, type Folder
Options and then press Enter. Then follow
the instructions in the In All Versions of
Windows bullet.

 ✓ In all versions of Windows (XP and newer):
Follow the instructions in one of the pre-
ceding bullets. Then, in the Folder Options
dialog box, click the View tab. Look for the
Hide File Extensions for Known File Types
option. Make sure that this check box is not
selected.

 ✓ In Mac OS X: In the Finder application’s
menu, select Preferences. In the resulting
dialog box, select the Advanced tab and
look for the Show All File Extensions option.
Make sure that this check box is selected.

 ✓ In Linux: Linux distributions tend not to
hide filename extensions. So, if you use
Linux, you probably don’t have to worry
about this. But I haven’t checked all Linux
distributions. So, if your files are named
Mortgage instead of Mortgage.
java or Mortgage.class, check
the documentation specific to your Linux
distribution.

26 Part I: Getting Started with Java Programming

Getting This Book’s Sample Programs
To get copies of this book’s sample programs, visit http://allmycode.
com/BeginProg and click the link to download the programs in this book.
Save the download file (BeginProgJavaDummies4.zip) to your computer’s
hard drive.

 In some cases, you click a download link, but your web browser doesn’t offer
you the option to save a file. If this happens to you, right-click the link (or
control-click on a Mac). In the resulting context menu, select Save Target As,
Save Link As, Download Linked File As, or a similarly labeled menu item.

Most web browsers save files to a Downloads directory on your com-
puter’s hard drive. But your browser may be configured a bit differently.
One way or another, make note of the folder containing the downloaded
BeginProgJavaDummies4.zip file.

Compressed archive files
When you visit http://allmycode.com/
BeginProg and you download this book’s
Java examples, you download a file named
BeginProgJavaDummies4.zip . A
.zip file is a single file that encodes a bunch
of smaller files and folders. So, for example,
my BeginProgJavaDummies4.zip
file encodes folders named 06-01, 06-02,
and so on. The 06-02 folder contains some
subfolders, which in turn contain files. (The
folder named 06-02 contains the code in
Listing 6-2 — the second listing in Chapter 6.)

A .zip file is an example of a compressed
archive file. Some other examples of com-
pressed archives include .tar.gz files,
.rar files, and .cab files. Uncompressing
a file means extracting the original files
stored inside the big archive file. (For a .zip
file, another word for “uncompressing” is
“unzipping.”) Uncompressing normally re-
creates the folder structure encoded in the
archive file. So, after uncompressing my

BeginProgJavaDummies4.zip file, your
hard drive has folders named 06-01, 06-02,
with subfolders named src and bin, which in
turn contain files named SnitSoft.java,
SnitSoft.class, and so on.

When you download BeginProgJava
Dummies4.zip, your web browser may
uncompress the file automatically for you. If not,
you can see the .zip file’s contents by double-
clicking the file’s icon. (In fact, you can copy
the file’s contents and perform some other file
operations after double-clicking the file’s icon.)
One way or another, don’t worry about uncom-
pressing my BeginProgJavaDummies4.
zip file. When you follow this chapter’s
instructions, you import the contents of my
BeginProgJavaDummies4.zip file
into the Eclipse IDE. And behind the scenes,
Eclipse’s import process uncompresses the
.zip file.

http://allmycode.com/beginprog
http://allmycode.com/beginprog
http://allmycode.com/beginprog
http://allmycode.com/beginprog

27 Chapter 2: Setting Up Your Computer

Setting Up Java
You can get the latest, greatest versions of Java by visiting www.oracle.com/
technetwork/java/javase/downloads. Look for the newest available
version of the JDK. Select a version that runs on your computer’s operating
system. Figure 2-1 shows me clicking a Download JDK button (circa March
2014) at the Oracle website.

Figure 2-1:
Getting the
Java JDK.

If you can’t identify the most appropriate Java version or if you want to know
what the acronyms JRE and JDK stand for, see the sidebar entitled “Eenie,
meenie, miney mo.”

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

28 Part I: Getting Started with Java Programming

After you accept a license agreement and click a link to a Java installation file,
your computer does one of two things:

 ✓ Downloads and installs Java on your system.

 ✓ Downloads the Java installation file and saves the file on your computer’s
hard drive.

If the installation begins on its own, follow the instructions, answer “Yes” to
any prompts, and (unless you have good reason to do otherwise) accept the
defaults. If the installation doesn’t begin on its own, start the installation by
double-clicking the downloaded installation file.

Eenie, meenie, miney mo
The Java Standard Edition download page
(www.oracle.com/technetwork/
java/javase/downloads) has many
options. If you’re not familiar with these options,
the page can be intimidating. Here are some of
the choices on the page:

 ✓ Word length: 32-bit or 64-bit

 You may have to choose between links
labeled for 32-bit systems and links labeled
for 64-bit systems. If you don’t know which
to choose, start by trying the 32-bit version.
(For more information about 32-bit systems
and 64-bit systems, see the “How many bits
does your computer have?” sidebar.)

 ✓ Java version number

 The Java download page may have older
and newer Java versions for you to choose
from. You may see links to Java SE 7,
Java SE 8, Java SE 8u4, and many others.
(Numbering such as 8u4 stands for the
fourth update to Java 8.) If you’re not sure
which version number you want, choosing
the highest version number is probably safe.
Most of this book’s examples run on a com-
puter with Java 5 installed. A few examples
run only on Java 7, Java 8, or higher.

 The numbering of Java’s versions is really
confusing. First comes Java 1.0, then Java
1.1, and then Java 2 Standard Edition 1.2

(J2SE 1.2). Yes, the “Java 2” numbering
overlaps partially with the “1.x” numbering.
Next come versions 1.3 and 1.4. After ver-
sion 1.4.1 comes version 1.4.2 (with interme-
diate stops at versions like 1.4.1_02). After
1.4.2_06, the next version is version 1.5,
which is also known as version 5.0. (That’s
no misprint. Version 5.0 comes immediately
after the 1.4 versions.)

 The formal name for version 1.5 is “Java
2 Platform, Standard Edition 5.0.” And to
make matters even worse, the next big
release is “Java Platform, Standard Edition
6” with the “2” removed from “Java 2” and
the “.0” missing from “6.0.” That’s what
happens when a company lets marketing
people call the shots.

 Mercifully, from Java 6 onward, the ver-
sion numbers settle into a predictable pat-
tern. After Java 6 comes “Java Platform,
Standard Edition 7” and “Java Platform,
Standard Edition 8” with updates such as
“8u02” (meaning “Java 8, update 2”).

 ✓ JDK versus JRE

 The download page offers you a choice
between the JDK (Java Development Kit)
and the JRE (Java Runtime Environment).
The JDK download contains more stuff
than the JRE download. The JRE includes

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads

29 Chapter 2: Setting Up Your Computer

a Java Virtual Machine and the Application
Programming Interface (refer to Chapter 1).
The JDK includes everything in the JRE,
and in addition, the JDK includes a Java
compiler (again, refer to Chapter 1).

 The Eclipse IDE contains its own Java
compiler. So, you can survive by download-
ing the smaller JRE (avoiding the big JDK
download). But I recommend downloading
the entire JDK. Why? Because you never
know when another compiler (separate
from Eclipse) will come in handy. Besides,
the installation and configuration of Eclipse
on a Mac is convoluted if you haven’t
installed the full JDK. So, if you want to
have a smooth ride, download the JDK
instead of the JRE.

 By the way, another name for the JDK
is the Java SDK — the Java Software
Development Kit. Some people still use
the SDK acronym, even though the folks
at Oracle don’t use it anymore. (Actually,
the original name was the JDK. Later, Sun
Microsystems changed it to the SDK. A
few years after that, the captains of Java
changed back to the name JDK. This con-
stant naming and renaming drives me crazy
as an author.)

 ✓ Java SE versus Java EE versus Java ME

 While you wander around, you may notice
links labeled Java EE or Java ME. If you
know what these are, and you know you
need them, by all means, download these
goodies. But if you’re not sure, bypass both
the Java EE and the Java ME links. Instead,
follow links to the Java SE (Java Standard
Edition).

 The abbreviation Java EE stands for Java
Enterprise Edition and Java ME stands for
Java Micro Edition. The Enterprise Edition
has software for large businesses, and the
Micro Edition has software for handheld
devices. (Google’s Android software bears

a passing resemblance to Java’s Micro
Edition, but in many ways, Android and
Java ME are very different animals.)

 You don’t need the Java EE or the Java ME
to run any of the examples in this book.

 ✓ Additional Java-related software

 You can download Java alone, or you can
download Java with Oracle’s NetBeans
IDE. You can download a collection of
demos and samples. You can probably even
download Java with fries and a soft drink.
You can download plenty of extra stuff, but
in truth, all you need is the Java JDK.

 ✓ Installation type

 You may be prompted to choose between
online installation and offline installation.

 With the offline installation, you begin by
downloading a large setup file. The file
takes up lots of space on your hard drive
(between 30MB and 150MB, depending on
what you choose to download). If you ever
need to install the JDK again, you have the
file on your own computer. Until you want a
newer version of the JDK, you don’t need to
download the JDK again.

 Why would anyone want to install the same
version of the JDK a second time? Typically,
I have two reasons. Either I want to install
the software on a second computer, or I
mess something up and have to uninstall
(and then reinstall) the software.

 With the online installation, you don’t down-
load a big setup file. Instead, you download
a teeny little setup file. Then you download
(and discard) pieces of the big 30MB to
150MB file as you need them. Using online
installation saves you many megabytes of
hard drive space. But, if you want to install
the same version of the JDK a second
time, you have to redo the whole surf/click/
download process.

30 Part I: Getting Started with Java Programming

 If your computer runs Linux, the downloaded file might be a .tar.gz file. A
.tar.gz file is a compressed archive. Extract the archive’s contents to a folder of
your choice and follow the installation instructions posted on the Oracle website.

For more information about filenames, file types, and archives, see the sidebars
entitled “Those pesky filename extensions” and “Compressed archive files” in
this chapter.

 While you’re visiting www.oracle.com/technetwork/java/javase/
downloads, you can also download a copy of the Java API documentation. Look
for a download labeled Java SE Development Kit Documentation (or something
like that). Accept the license agreement, click the download link, and watch the
file flow downward onto your computer’s hard drive. The downloaded file is a
compressed .zip archive, so you can uncompress it the way you uncompress
all other such archives. (The uncompressed folder is a bunch of web pages. To
start reading the Java API documentation, look in that folder for an index file or
an index.html file. Double-click the file, and you’re on your way.)

 For an introduction to the Java API documentation, refer to Chapter 1.

Most people have no difficulties visiting the Oracle website http://oracle.
com/ and installing Java using the website’s menus. But if your situation is more
“interesting” than most, you may have to make some decisions and perform some
extra steps. The next few sections describe some of these “interesting” scenarios.

How many bits does your computer have?
As you follow this chapter’s instructions, you
may be prompted to choose between two
versions of a piece of software — the 32-bit
version and the 64-bit version. What’s the dif-
ference, and why should you care?

A bit is the smallest piece of information that
you can store on a computer. Most people think
of a bit as either a zero or a one, and that depic-
tion of “bit” is quite useful. To represent almost
any number, you pile several bits next to one
another and do some fancy things with powers
of two. The numbering system’s details aren’t
show stoppers. The important thing to remem-
ber is that each piece of circuitry inside your
computer stores the same number of bits. (Well,
some circuits inside your computer are outliers
with their own particular numbers of bits, but
that’s not a big deal.)

In an older computer, each piece of circuitry
stores 32 bits. In a newer computer, each piece
of circuitry stores 64 bits. This number of bits
(either 32 or 64) is the computer’s word length.
In a newer computer, a word is 64 bits long.

“Great!” you say. “I bought my computer last
week. It must be a 64-bit computer.” Well, the
story may not be that simple. In addition to your
computer’s circuitry having a word length, the
operating system on your computer also has a
word length. An operating system’s instructions
work with a particular number of bits. An oper-
ating system with 32-bit instructions can run on
either a 32-bit computer or a 64-bit computer,
but an operating system with 64-bit instruc-
tions can run only on a 64-bit computer. And
to make things even more complicated, each
program that you run (a web browser, a word

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
http://oracle.com
http://oracle.com

31 Chapter 2: Setting Up Your Computer

processor, or one of your own Java programs)
is either a 32-bit program or a 64-bit program.
You may run a 32-bit web browser on a 64-bit
operating system running on a 64-bit computer.
Alternatively, you may run a 32-bit browser on
a 32-bit operating system on a 64-bit computer.
(See the figure that accompanies this sidebar.)

When a website makes you choose between
32-bit and 64-bit software versions, the main
consideration is the word length of your oper-
ating system, not the word length of your com-
puter’s circuitry. You can run a 32-bit word
processor on a 64-bit operating system, but you
can’t run a 64-bit word processor on a 32-bit
operating system (no matter what word length
your computer’s circuitry has). Choosing 64-bit
software has one big advantage — namely, that
64-bit software can access more than three
gigabytes of a computer’s fast random access
memory. And in my experience, more memory
means faster processing.

How does all this stuff about word lengths
affect your Java and Eclipse downloads? Here’s
the story:

 ✓ If you run a 32-bit operating system, you run
only 32-bit software.

 ✓ If you run a 64-bit operating system, you
probably run some 32-bit software and
some 64-bit software. Most 32-bit software
runs fine on a 64-bit operating system.

 ✓ On a 64-bit operating system, you might
have two versions of the same program. For
example, on my Windows computer, I have
two versions of Internet Explorer — a 32-bit
version and a 64-bit version.

 Normally, Windows puts 32-bit programs in
its Program Files (x86) directory
and puts 64-bit programs in its Program
Files directory.

 ✓ A chain of word lengths is as strong as
its weakest link. For example, when I visit
http://java.com and click the site’s
Do I Have Java? link, the answer I get
depends on the match between my comput-
er’s Java version and the web browser that
I’m running. With only 64-bit Java installed

(continued)

http://java.com

32 Part I: Getting Started with Java Programming

Finding Java on your computer
Chapter 1 describes the Java ecosystem with its compiler, its virtual machine,
and its other parts. Your computer may already have some of these Java
gizmos. If so, you can either live with what you already have or add the newest
version of Java to whatever is already on your system.

 Java’s versions aren’t like indoor cats. They can coexist on the same computer
without fighting or hissing at one another. If you have more than one version of
Java on your computer, you’re okay. You can even mix 32-bit versions and 64-bit
versions on the same computer (as long as you have at least one Java version
whose word length matches your Eclipse version). I have three versions of Java
on my Windows 8 computer, and I never run into trouble. (Occasionally, I cause
my own trouble by confusing one version of Java for another. But this chapter’s
“Configuring Java in Eclipse” section helps me sort things out. What would I do
without this book by my side?)

To find out what you already have and possibly avoid reinstalling Java, keep
reading.

On Windows 8
In the Start screen, hold down the Windows key while pressing Q. In the result-
ing search box, type Programs and Features and then press Enter. Then pro-
ceed to the In All Versions of Windows (XP and Newer) paragraphs.

on my computer, the Do I Have Java? link
in my 32-bit Firefox browser answers No
working Java was detected
on your system. But the same link in
my 64-bit Internet Explorer answers You
have the recommended Java
installed.

 On a Mac, Safari and Firefox are 64-bit
browsers, but Chrome is a 32-bit browser.
So on a Mac, you’re likely to see slightly dif-
ferent behavior when using Firefox versus
Chrome.

 ✓ Here’s the most important thing to remem-
ber about word lengths: When you follow
this chapter’s instructions, you get Java
software and Eclipse software on your
computer. Your Java software’s word length

must match your Eclipse software’s word
length. In other words, 32-bit Eclipse runs
with 32-bit Java, and 64-bit Eclipse runs
with 64-bit Java. I haven’t tried all possible
combinations, but when I try to run 32-bit
Eclipse with 64-bit Java, I see a misleading
No Java virtual machine was
found error message.

 ✓ Finally, some websites use unintuitive
names for their software downloads. If
you see i365 or i586 in the name of a down-
load, that usually means 32-bit. If you see
x86 without the number 64 anywhere in a
download’s name, that also means 32-bits.
If you see 64 in the name (with or without
the x86 designation), that indicates a 64-bit
program.

(continued)

33 Chapter 2: Setting Up Your Computer

On Windows 7
Select Start➪Control Panel➪Programs➪Programs and Features. Then follow
the instructions in the In All Versions of Windows (XP and Newer) paragraphs.

On Windows XP
Select Start➪Control Panel➪Add or Remove Programs. Then follow the instruc-
tions in the In All Versions of Windows (XP and Newer) paragraphs.

In all versions of Windows (XP and newer)
Look for Java in the list of installed programs (see Figure 2-2). If you see Java 8
or higher, you’re okay. If the only Java version numbers that you see are lower
than 8 (such as 1.4.2, 5.0, or 6), your computer can run some (but not all) of
the programs in this book.

Figure 2-2:
The

Programs
and

Features
dialog

box on
Windows 8.

 If the version number is 5.0 or higher, you can run many (but not all) of the
programs in this book.

On a Mac
A Macintosh computer can support two different flavors of Java — a flavor
developed in-house at Apple, Inc., and another flavor developed under Oracle’s
auspices. Certain commands and procedures apply to one flavor of Java but
not to the other. For example, to find Apple’s version of Java, you look in the
/System/Library/Java/Java Virtual Machines directory. But to find
Oracle’s Java, you look in the /Library/Java/JavaVirtualMachines
directory. (One path starts with /System/Library; the other path starts with
/Library.) You might also find Oracle’s Java in the /Library/Internet
Plug-Ins/JavaAppletPlugin.plugin/Contents/Home directory.

Tiger, Leopard, and Snow Leopard (OS X 10.4, OS X 10.5, and OS X 10.6) have
Java preinstalled. Java isn’t preinstalled on Lion, Mountain Lion, or Mavericks
(OS X 10.7, OS X 10.8, or OS X 10.9). On Lion, Mountain Lion, or Mavericks,
the system prompts you to install either Apple’s Java or Oracle’s Java the

34 Part I: Getting Started with Java Programming

first time you launch an application that requires Java. (For example, later in
this chapter, you install Eclipse. When you first try to launch Eclipse, if you
haven’t already installed Java, your computer advises you to do so.)

Table 2-1 describes the correlations between Mac OS and Java versions.

Table 2-1 Mac OS X Versions and Java Versions
If You Have This Mac
OS X Version . . .

Then You Have This
Version of Java . . .

And You Can Install This
Java Version

OS X 10.4.11 (Tiger) Apple’s Java 5.0 Apple’s Java 5.0

OS X 10.5.8 (Leopard)
PowerPC and/or 32-bit

Apple’s Java 5.0 Apple’s Java 5.0

OS X 10.5.8 (Leopard)
Intel-based and 64-bit

Apple’s Java 6 Apple’s Java 6

OS X 10.6.8 (Snow
Leopard)

Apple’s Java 6 Apple’s Java 6

OS X 10.7.5 (Lion) (no Java) Apple’s Java 6

Oracle’s Java 8

OS X 10.8.5 (Mountain
Lion)

(no Java) Apple’s Java 6

Oracle’s Java 8

OS X 10.9 (Mavericks) (no Java) Apple’s Java 6

Oracle’s Java 8

To find out which version of OS X you’re running, do the following:

 1. Choose Apple➪About This Mac.

 2. In the About This Mac dialog that appears, look for the word Version.

 You see Version 10.9.2 (or something like that) in very light gray text.

 The information in Table 2.1 applies to updated versions of Mac OS X. If you
don’t regularly apply software updates, you may be running OS X 10.8.1 instead
of 10.8.5. If so, select Software Update in the Apple menu and follow the result-
ing prompts.

 Here and there on the web, I see postings describing ways to install Java 5.0 on
OS X 10.3 and other ways to circumvent the restrictions in Table 2-1. But if you
don’t like to tinker, these workarounds aren’t for you. (For every hardware or
software requirement, someone tries to create a workaround, or hack. Anyway,
apply hacks at your own risk.)

35 Chapter 2: Setting Up Your Computer

If you don’t trust Table 2-1 (and frankly, you shouldn’t trust everything you find
in print), you can perform tests on your computer to discover the presence
of Java and (if your Mac has Java) the Java version number. Here’s a test that
works on older versions of the Macintosh operating system:

 1. In the Spotlight’s search field, type Java Preferences.

 2. When the Spotlight’s Top Hit is Java Preferences, press Enter.

 The Java Preferences window appears (see Figure 2-3).

Figure 2-3:
The Java

Preferences
application.

 3. The Java Preferences window lists versions of Java that are installed
on your computer.

 In Figure 2-3, the computer has four versions of Java — the 32-bit (i386)
versions of Java 6 and Java 7 and the 64-bit (x86_64) versions of Java 6
and Java 7.

For newer versions of the Macintosh operating system, try this test:

 1. In the Apple menu, select System Preferences.

 2. In the System Preferences application window, look for a Java icon
(see Figure 2-4).

 3. Click the Java icon.

 The Java Control Panel appears (see Figure 2-5).

36 Part I: Getting Started with Java Programming

Figure 2-4:
A Java

icon in the
System

Preferences
application.

Figure 2-5:
The Java

Control
Panel.

37 Chapter 2: Setting Up Your Computer

 4. In the Java Control Panel, select the Java tab (see Figure 2-6).

Figure 2-6:
The Java
tab in the

Java Control
Panel.

 5. In the Java tab, click View.

 The Java Runtime Environment Settings window appears (see Figure 2-7).

Figure 2-7:
The User

tab in
the Java
Runtime

Environment
Settings
window.

38 Part I: Getting Started with Java Programming

 6. Look for versions of Java in the User tab and the System tab of the
Java Runtime Environment Settings window.

 Figure 2-7 shows the User tab of the Java Runtime Environment Settings
window. According to the figure, the computer runs Java 1.8. (Java’s
close friends call this version “Java 8.”)

On Linux
To check your Java installation (or your lack of Java) on a Linux computer, do
the following:

 1. Poke around among the desktop’s menus for something named Terminal
(also known as Konsole).

 A Terminal window opens (usually with plain white text on a plain black
background).

 2. In the Terminal window, type the following text and then press Enter:
java -version.

 On my Linux computer, the Terminal window responds with the follow-
ing text:

java version 1.8.0_1

 If your computer responds with the number 1.8.0 or higher, you can pop
open the champagne and look forward to some good times running this
book’s examples. If the version number is 1.5 or greater, you can run many,
but not all, of this book’s examples. If your computer responds with some-
thing like command not found, most likely, Java isn’t installed on your
computer.

Setting Up the Eclipse Integrated
Development Environment

In the previous sections, you get all the tools your computer needs for pro-
cessing Java programs. This section is different. In this section, you get the
tool that you need for composing and testing your Java programs. You get
Eclipse — an integrated development environment for Java.

An integrated development environment (IDE) is a program that provides tools
to help you create software easily and efficiently. You can create Java pro-
grams without an IDE, but the time and effort you save using an IDE makes
the IDE worthwhile. (Some hard-core programmers disagree with me, but
that’s another matter.)

39 Chapter 2: Setting Up Your Computer

According to the Eclipse Foundation’s website, Eclipse is “a universal tool plat-
form — an open extensible IDE for anything and nothing in particular.” Indeed,
Eclipse is versatile. Programmers generally think of Eclipse as an IDE for
developing Java programs, but Eclipse has tools for programming in C++, PHP,
and many other languages. I’ve even seen incarnations of Eclipse that have
nothing to do with program development. (One such product is the Lively
Browser — a web browser whose tabs are built from Eclipse components.)

Downloading Eclipse
Here’s how you download Eclipse:

 1. Visit www.eclipse.org.

 2. Look for a way to download Eclipse for your operating system.

 Today, I visit www.eclipse.org and see a big button displaying the
words Get Started Now . . . Download Eclipse (see Figure 2-8). Tomorrow,
who knows what I’ll see on this ever-changing website!

 After clicking the Download Eclipse button, I see a list of downloads for
my computer’s operating system (see Figure 2-9).

 Eclipse’s download page directs you to versions of Eclipse that are specific
to your computer’s operating system. For example, if you visit the page on
a Windows computer, the page shows you downloads for Windows only. If
you’re downloading Eclipse for use on another computer, you may want to
override the automatic choice of operating system. Look for a little drop-
down list containing the name of your computer’s operating system. You
can change the selected operating system in that drop-down list.

Figure 2-8:
The home

page for
eclipse.org.

 3. Choose an Eclipse package from the available packages.

 Regardless of your operating system, Eclipse comes in many shapes, sizes,
and colors. The Eclipse website offers Eclipse IDE for Java Developers,
Eclipse IDE for Java EE Developers, Eclipse Classic, and many other spe-
cialized downloads (see Figure 2-9). I usually select Eclipse IDE for Java
Developers, and I recommend that you do the same.

http://www.eclipse.org
http://www.eclipse.org

40 Part I: Getting Started with Java Programming

Figure 2-9:
Eclipse.org
lists down-

loads for
Windows.

 4. Choose between Eclipse’s 32-bit and 64-bit versions.

 If you know which Java version you have (32-bit or 64-bit), be sure to
download the corresponding Eclipse version. If you don’t know which
Java version you have, download the 64-bit version of Eclipse and try to
launch it. If you can launch 64-bit Eclipse, you’re okay. But if you get a No
Java virtual machine was found error message, try downloading
and launching the 32-bit version of Eclipse.

 For the full lowdown on 32-bit and 64-bit word lengths, see this chapter’s
“How many bits does your computer have?” sidebar.

 5. Follow the appropriate links to get the download to begin.

 The links you follow depend on which of Eclipse’s many mirror sites is
offering up your download. Just wade through the possibilities and get
the download going.

Installing Eclipse
Precisely how you install Eclipse depends on your operating system and on
what kind of file you get when you download Eclipse. Here’s a brief summary:

 ✓ If you run Windows and the download is an.exe file:

 Double-click the .exe file’s icon.

 ✓ If you run Windows and the download is a.zip file:

 Extract the file’s contents to the directory of your choice.

 In other words, find the .zip file’s icon in Windows Explorer (also known
as File Explorer). Then double-click the .zip file’s icon. (As a result,
Explorer displays the contents of the .zip file, which consists of only
one folder — a folder named eclipse.) Drag the eclipse folder to a
convenient place in your computer’s hard drive.

41 Chapter 2: Setting Up Your Computer

 For more information about .zip files, see the “Compressed archive
files” sidebar in this chapter.

 My favorite place to drag the eclipse folder is directly onto the C: drive.
So my C: drive has folders named Program Files, Windows, eclipse,
and others. I avoid making the eclipse folder be a subfolder of Program
Files because from time to time, I’ve had problems dealing with the
blank space in the name Program Files.

 ✓ If you run Mac OS X:

 When you download Eclipse, you get either a .tar.gz file or a .dmg file.

	 •	A	.tar.gz file is a compressed archive file. When you download the
file, your web browser might automatically do some uncompressing
for you. If so, you won’t find a .tar.gz file in your Downloads folder.
Instead, you’ll find either a .tar file (because your web browser
uncompressed the .gz part) or an eclipse folder (because your
web browser uncompressed both the .tar and .gz parts).

 If you find a new .tar file or .tar.gz file in your Downloads folder,
double-click the file until you see the eclipse folder. Drag this new
eclipse folder to your Applications folder, and you’re all set.

	 •	If	you	download	a	.dmg file, your web browser may open the file
for you. If not, find the .dmg file in your Downloads folder and
double-click the file. Follow any instructions that appear after
this double-click. If you’re expected to drag Eclipse into your
Applications folder, do so.

 ✓ If you run Linux:

 You may get a .tar.gz file, but there’s a chance you’ll get a self-extracting
.bin file. Extract the .tar.gz file to your favorite directory or execute
the self-extracting .bin file.

Running Eclipse for the first time
The first time you launch Eclipse, you perform a few extra steps. To get
Eclipse running, do the following:

 1. Launch Eclipse.

 In Windows, the Start menu may not have an Eclipse icon. In that case,
look in Windows Explorer (aka File Explorer) for the folder containing your
extracted Eclipse files. Double-click the icon representing the eclipse.
exe file. (If you see an eclipse file but not an eclipse.exe file, check
this chapter’s “Those pesky filename extensions” sidebar.)

42 Part I: Getting Started with Java Programming

 On a Mac, go to the Spotlight and type Eclipse in the search field. When
Eclipse appears as the Top Hit in the Spotlight’s list, press Enter.

 The first time you try to run Eclipse on a Mac, you might get a message
telling you that Eclipse isn’t from the App Store and isn’t from an identi-
fied developer. Nothing in this world is 100% safe, but I’ve downloaded
and installed Eclipse a zillion times, and I’ve never had a problem with it.
So to get around this stumbling block, find the Eclipse app entry in your
Applications folder (or wherever else you installed Eclipse). Control-click
the application entry and, in the resulting context menu, select Open. At
this point, a dialog box appears. The dialog box asks you if you’re sure
that you want to open the application. You’re sure, so click Open.

 When you launch Eclipse, you see a Workspace Launcher dialog (see
Figure 2-10). The dialog asks where, on your computer’s hard drive, you
want to store the code that you will create using Eclipse.

Figure 2-10:
Eclipse’s

Workspace
Launcher.

 2. In the Workspace Launcher dialog, click OK to accept the default (or
don’t accept the default!).

 One way or another, it’s no big deal!

 Because this is your first time using a particular Eclipse workspace, Eclipse
starts with a Welcome screen (see Figure 2-11). Through the ages, most of
the Eclipse Welcome screens have displayed icons along with little or no
helpful text.

 3. Hover over the icons on Eclipse’s Welcome screen until you find an
icon whose tooltip contains the word Workbench.

 4. Click the Workbench icon to open Eclipse’s main screen.

 A view of the main screen, after opening Eclipse with a brand-new work-
space, is shown in Figure 2-12.

43 Chapter 2: Setting Up Your Computer

Figure 2-11:
Eclipse’s

Welcome
screen.

Figure 2-12:
The Eclipse
workbench

with a
brand-new

workspace.

44 Part I: Getting Started with Java Programming

Configuring Java in Eclipse
Eclipse normally looks on your computer for Java installations and selects an
installed version of Java to use for running your Java programs. Your computer
may have more than one version of Java, so you may want to double-check
Eclipse’s choice of the Java version. The following steps show you how:

 1. On Windows or Linux: In Eclipse’s main menu, select Window➪
Preferences. On a Mac: In Eclipse’s main menu, select Eclipse➪
Preferences.

 As a result, Eclipse’s Preferences dialog appears. (You can follow along
with Figure 2-13.)

Figure 2-13:
Eclipse’s

Preferences
dialog.

 2. In the tree on the left side of the Preferences dialog, expand the Java
branch.

 3. Within the Java branch, select the Installed JREs sub-branch.

 4. Look at the list of Java versions (Installed JREs) in the main body of
the Preferences dialog.

 In the list, each version of Java has a check box. Eclipse uses the version
whose box is checked. If the checked version isn’t your preferred version
(for example, if the checked version isn’t version 8 or higher), you can
make some changes.

45 Chapter 2: Setting Up Your Computer

 5. If your preferred version of Java appears in the Installed JREs list, put
a check mark in that version’s check box.

 6. If your preferred version of Java doesn’t appear in the Installed JREs
list, click the Add button.

 When you click the Add button, a JRE Type dialog appears (see Figure 2-14).

Figure 2-14:
The JRE

Type dialog.

 7. In the JRE Type dialog, double-click Standard VM.

 As a result, a JRE Definition dialog appears (see Figure 2-15). What you do
next depends on a few different things.

 8. Fill in the dialog’s JRE Home field.

 How you do this depends on your operating system.

	 •	On	Windows,	browse	to	the	directory	in	which	you’ve	installed	
your preferred Java version. On my many Windows computers,
that directory is either C:\Program Files\Java\jre8, C:\
Program Files\Java\jdk1.8.0, C:\Program Files (x86)\
Java\jre8, or something of that sort.

	 •	On	a	Mac,	use	the	Finder	to	browse	to	the	directory	in	which	
you’ve installed your preferred Java version. Type the name of the
directory in the dialog’s JRE Home field.

 My Mac has one Java directory named /System/Library/
Java/Java Virtual Machines/1.6.0.jdk/Contents/
Home and another Java directory named /Library/Java/
JavaVirtualMachines/jdk 1.8.0.jdk/Contents/Home.
(The first is for Apple’s old version of Java; the second is for
Oracle’s new Java version.) You might also find Oracle’s Java in
the /Library/Internet Plug-Ins/JavaAppletPlugin.
plugin/Contents/Home directory.

46 Part I: Getting Started with Java Programming

Figure 2-15:
The JRE

Definition
dialog (after

you’ve fol-
lowed Steps

8 and 9).

 Directories like /System and /Library don’t normally appear in
the Finder window. To browse to one of these directories (to the
/Library directory, for example), choose Go➪Go to Folder in the
Finder’s menu bar. In the resulting dialog, type /Library and then
press Go.

 As you navigate to the directory containing your preferred Java
version, you may encounter a JDK 1.8.0.jdk icon or some other
item whose extension is .jdk. To see the contents of this item,
control-click the item’s icon and then select Show Package Contents.

	 •	On	Linux,	browse	to	the	directory	in	which	you’ve	installed	your	
preferred Java version. When in doubt, search for a directory
whose name starts with jre or jdk.

 You might have one more thing to do back in the JRE Definition dialog.

 9. Look at the JRE Definition dialog’s JRE Name field; if Eclipse hasn’t
filled in a name automatically, type a name (almost any text) in the
JRE Name field.

 10. Dismiss the JRE Definition dialog by clicking Finish.

 Eclipse’s Preferences dialog returns to the foreground. The box’s Installed
JREs list contains your newly added version of Java.

47 Chapter 2: Setting Up Your Computer

 11. Put a check mark in the check box next to your newly added version
of Java.

 You’re almost done. (You have a few more steps to follow.)

 12. Within the Java branch on the left side of the Preferences dialog,
select the Compiler sub-branch.

 In the main body of the Preferences dialog, you see a Compiler Com-
pliance Level drop-down list (see Figure 2-16).

Figure 2-16:
Setting the

compiler
compliance

level.

 13. In the Compiler Compliance Level drop-down list, select a number
that matches your preferred Java version.

 For Java 7, I select compliance level 1.7. For Java 8, I select compliance
level 1.8.

 14. Whew! Click the Preferences dialog’s OK button to return to the
Eclipse workbench.

48 Part I: Getting Started with Java Programming

Importing this book’s sample programs
This import business can be tricky. As you move from one dialog to the next,
many of the options have similar names. That’s because Eclipse offers many
different ways to import many different kinds of things. Anyway, if you follow
these instructions, you’ll be okay.

 1. Follow the steps in this chapter’s earlier “Getting This Book’s Sample
Programs” section.

 2. In Eclipse’s main menu, choose File➪Import (see Figure 2-17).

 As a result, Eclipse displays an Import dialog.

Figure 2-17:
Starting to
import this

book’s code.

 3. In the Import dialog’s tree, expand the General branch.

 4. In the General branch, double-click the Existing Projects into Workspace
sub-branch (see Figure 2-18).

 As a result, an Import Projects dialog appears.

49 Chapter 2: Setting Up Your Computer

Figure 2-18:
Among all

the options,
select

Existing
Projects into
Workspace.

 5. In the Import Projects dialog, choose either the Select Root Directory
radio button or the Select Archive File radio button (see Figure 2-19).

 Here’s how you decide which radio box to choose:

 First, make sure that you’ve heeded the advice that I give in the sidebar
entitled “Those pesky filename extensions.” Then look in the folder con-
taining the file that you downloaded from this book’s website.

	 •	If	your	web	browser	doesn’t	automatically	uncompress	down-
loaded .zip files, you’ll find this book’s code in an archive file
named BeginProgJavaDummies4.zip. In that case, choose the
Select Archive File radio button.

	 •	If	your	web	browser	automatically	uncompresses	downloaded	.zip
files, you’ll find this book’s code in a directory (a folder) named
BeginProgJavaDummies4. In that case, choose the Select Root
Directory radio button.

 To ensure that you can distinguish between a folder and a .zip file, check
this chapter’s “Those pesky filename extensions” sidebar.

 For the complete scoop on .zip files and other archive files, the sidebar
entitled “Compressed archive files.”

 6. Click the Browse button to find the BeginProgJavaDummies4.zip file
or the BeginProgDummies4 directory on your computer’s hard drive.

 After you find the file or the directory, Eclipse’s Import Projects dialog displays the
names of the projects inside the file. (Again, refer to Figure 2-19.)

50 Part I: Getting Started with Java Programming

Figure 2-19:
The Import

Projects
dialog.

 7. Click the Select All button.

 This book’s examples are so exciting that you want to import all of them!

 8. Click the Finish button.

 As a result, the main Eclipse workbench reappears. The left side of
the workbench displays the names of this book’s Java projects (see
Figure 2-20).

Now the real fun begins.

Figure 2-20:
Eclipse

displays
a bunch
of Java

projects.

51 Chapter 2: Setting Up Your Computer

What’s Next?
If you’re reading this paragraph, you’ve probably followed some of the
instructions in this chapter — instructions for installing Java and the Eclipse
IDE on your computer. So the burning question is this: Have you done the
installation correctly? The answer to that question lies in Chapter 3 because
in that chapter, you use these tools to run a brand-new Java program.

52 Part I: Getting Started with Java Programming

Chapter 3

Running Programs
In This Chapter
▶ Compiling and running a program

▶ Working with a workspace

▶ Editing your own Java code

I
f you’re a programming newbie, for you, running a program probably means
clicking a mouse. You want to run Internet Explorer, so you double-click the

Internet Explorer icon. That’s all there is to it.

When you create your own programs, the situation is a bit different. With a
new program, the programmer (or someone from the programmer’s company)
creates the program’s icon. Before that process, a perfectly good program may
not have an icon at all. So what do you do with a brand-new Java program?
How do you get the program to run? This chapter tells you what you need
to know.

Running a Canned Java Program
The best way to get to know Java is to do Java. When you’re doing Java, you’re
writing, testing, and running your own Java programs. This section prepares
you by describing how you run and test a program. Instead of writing your
own program, you run a program that I’ve already written for you. The pro-
gram calculates your monthly payments on a home mortgage loan.

The mortgage-calculating program doesn’t open its own window. Instead, the
program runs in Eclipse’s Console view. The Console view is one of the tabs
in the lower-right part of the Eclipse workbench (see Figure 3-1). A program
that operates completely in this Console view is called a text-based program.

54 Part I: Getting Started with Java Programming

Figure 3-1:
A run of this

chapter’s
text-based
mortgage
program.

 You may not see a Console tab in the lower-right part of the Eclipse workbench.
To coax the Console view out of hiding, choose Window➪Show View➪Other. In
the resulting Show View dialog box, expand the General branch. Finally, within
that General branch, double-click the Console item.

For more information about the Console view (and about Eclipse’s workbench
in general), see the “Views, editors, and other stuff” section, later in this
chapter.

 You can see GUI versions of the program in Figure 3-1, and of many other
examples from this book, by visiting the book’s website (allmycode.com/
BeginProg).

Actually, as you run the mortgage program, you see two things in Eclipse’s
Console view:

 ✓ Messages and results that the mortgage program sends to you: Messages
include things like How much are you borrowing?. Results include
lines like Your monthly payment is $552.20.

 ✓ Responses that you give to the mortgage program while it runs: If you
type 100000.00 in response to the program’s question about how much
you’re borrowing, you see that number echoed in Eclipse’s Console view.

Here’s how you run the mortgage program:

 1. Make sure that you’ve followed the instructions in Chapter 2 — instruc-
tions for installing Java, for installing and configuring Eclipse, and for
getting this book’s sample programs.

 Thank goodness! You don’t have to follow those instructions more
than once.

 2. Launch Eclipse.

 The Eclipse Workspace Launcher dialog box appears (see Figure 3-2).

http://allmycode.com/beginprog
http://allmycode.com/beginprog

55 Chapter 3: Running Programs

Figure 3-2:
The Eclipse
Workspace

Launcher.

 A workspace is a folder on your computer’s hard drive. Eclipse stores your
Java programs in one or more workspace folders. Along with these Java
programs, each workspace folder contains some Eclipse settings. These
settings store things like the version of Java that you’re using, the colors
that you prefer for words in the editor, the size of the editor area when
you drag the area’s edges, and other things. You can have several work-
spaces with different programs and different settings in each workspace.

 By default, the Workspace Launcher offers to open whatever workspace
you opened the last time you ran Eclipse. You want to open the workspace
that you used in Chapter 2, so don’t modify the stuff in the Launcher’s
Workspace field.

 3. In the Workspace Launcher dialog box, click OK.

 The big Eclipse workbench stares at you from your computer screen
(see Figure 3-3).

 In Figure 3-3, the leftmost part of the workbench is Eclipse’s Package
Explorer, which contains numbers like 03-01, 04-01, and so on. Each
number is actually the name of an Eclipse project. Formally, a project is
a collection of files and folders inside a workspace. Intuitively, a project
is a basic work unit. For example, a self-contained collection of Java pro-
gram files to manage your CD collection (along with the files containing
the data) may constitute a single Eclipse project.

 Looking again at the Package Explorer in Figure 3-3, you see projects
named 03-01, 04-01, and so on. My project 03-01 holds the first and
only example in Chapter 3 (this chapter). Project 06-02 contains the
Java program in Listing 6-2 (the second code listing in Chapter 6 of
this book). Project names can include letters, digits, blank spaces, and
other characters, but for the names of this book’s examples, I stick
with digits and dashes.

 To read more about things like Eclipse’s Package Explorer, see the upcom-
ing section “What’s All That Stuff in Eclipse’s Window?”

56 Part I: Getting Started with Java Programming

Figure 3-3:
The Eclipse
workbench.

 When you launch Eclipse, you may see something different from the stuff
in Figure 3-3. You may see Eclipse’s Welcome screen with only a few icons
in an otherwise barren window. You may also see a workbench like the
one in Figure 3-3, but without a list of numbers (03-01, 04-01, and so on)
in the Package Explorer. If so, you may have missed some instructions
on configuring Eclipse in Chapter 2. Alternatively, you may have modi-
fied the stuff in the Launcher’s Workspace field in Step 2 of this section’s
instructions.

 In any case, make sure that you see numbers like 03-01 and 04-01 in the
Package Explorer. Seeing these numbers assures you that Eclipse is
ready to run the sample programs from this book.

 4. In the Package Explorer, click the 03-01 branch.

 This chapter’s Java project — the 03-01 project — appears highlighted.

 You may want to see a sneak preview of some Java code. To see the Java
program that you’re running in Project 03-01, expand the 03-01
branch in the Package Explorer. Inside the 03-01 branch, you find a
src branch, which in turn contains a (default package) branch.
Inside the (default package) branch, you find the Mortgage.java
branch. That Mortgage.java branch represents my Java program.
Double-clicking the Mortgage.java branch makes my code appear in
Eclipse’s editor.

57 Chapter 3: Running Programs

 5. Choose Run➪Run As➪Java Application from the main menu, as
shown in Figure 3-4.

 When you choose Run As➪Java Application, the computer runs the
project’s code. (In this example, the computer runs a Java program
that I wrote.) As part of the run, the message How much are you
borrowing? appears in Eclipse’s Console view. (The Console view
shares the lower-right area of Eclipse’s workbench with the Problems
view, the Javadoc view, the Declaration view, and possibly other views.
Refer to Figure 3-1.)

Figure 3-4:
One of the

ways to run
the code in
Project
03-01.

 6. Click anywhere inside Eclipse’s Console view and then type a number,
like 100000.00, and press Enter.

 When you type a number in Step 6, don’t include your country’s currency
symbol and don’t group the digits. (U.S. residents, don’t type a dollar
sign and don’t use any commas.) Things like $100000.00 and 1,000,000.00
cause the program to crash. You see a NumberFormatException mes-
sage in the Console view.

 Grouping separators vary from one country to another. The run shown
in Figure 3-1 is for a computer configured in the United States where
100000.00 (with a dot) means “one hundred thousand.” But the run
might look different on a computer that’s configured in what I call a
“comma country” — a country where 100000,00 (with a comma) means
“one hundred thousand.” If you live in a comma country, and you type
100000.00 exactly as it’s shown in Figure 3-1, you probably get an error
message (an InputMismatchException). If so, change the number
amounts in your file to match your country’s number format. When you
do, you should be okay.

 After you press Enter, the Java program displays another message
(What's the interest rate?) in the Console view. (Again, refer
to Figure 3-1.)

 7. In response to the interest rate question, type a number, like 5.25, and
press Enter.

 After you press Enter, the Java program displays another message (How
many years . . . ?) in the Console view.

58 Part I: Getting Started with Java Programming

 8. Type a number, like 30, and press Enter.

 In response to the numbers that you type, the Java program displays a
monthly payment amount. Again, refer to Figure 3-1.

 Disclaimer: Your local mortgage company charges fees of all kinds. To
get a mortgage in real life, you pay more than the amount that my Java
program calculates. (A lot more.)

 When you type a number in Step 8, don’t include a decimal point. Numbers
like 30.0 cause the program to crash. You see a NumberFormatException
message in the Console view.

 Occasionally, you decide in the middle of a program’s run that you’ve
made a mistake of some kind. You want to stop the program’s run dead
in its tracks. Simply click the little red rectangle above the Console view
(see Figure 3-5).

Figure 3-5:
How to

prematurely
terminate a

program’s
run.

If you follow this section’s instructions and you don’t get the results that I
describe, you can try three things. I list them in order from best to worst:

 ✓ Check all the steps to make sure that you did everything correctly.

 ✓ Send an e-mail to me at BeginProg@allmycode.com, post to my
Facebook wall (/allmycode), or tweet to the Burd (@allmycode). If
you describe what happened, I can probably figure out what went wrong
and tell you how to correct the problem.

 ✓ Panic.

Typing and Running Your Own Code
The previous section is about running someone else’s Java code (code that
you download from this book’s website). But eventually, you’ll write code on
your own. This section shows you how to create code with the Eclipse IDE.

59 Chapter 3: Running Programs

Separating your programs from mine
In Chapter 2, you download this book’s examples from my website. Then
you create an Eclipse workspace and import the book’s examples into your
workspace.

You can create your own projects in the same workspace. But if you want to
separate your code from mine, you can create a second workspace. Here are
two ways to create a new workspace:

 ✓ When you launch Eclipse, type a new folder name in the Workspace
field of Eclipse’s Workspace Launcher dialog box.

 If the folder doesn’t already exist, Eclipse creates the folder. If the folder
already exists, Eclipse’s Package Explorer lists any projects that the
folder contains.

 ✓ In the Eclipse workbench’s main menu, choose File➪Switch Workspace
(see Figure 3-6).

 When you choose File➪Switch Workspace, Eclipse offers you a few
of your previously opened workspace folders. If your choice of folder
isn’t in the list, select the Other option. In response, Eclipse reopens its
Workspace Launcher dialog box.

Figure 3-6:
Switching to

a different
Eclipse

workspace.

60 Part I: Getting Started with Java Programming

Writing and running your program
Here’s how you create a new Java project:

 1. Launch Eclipse.

 2. From Eclipse’s menu bar, choose File➪New➪Java Project.

 A New Java Project dialog box appears.

 3. In the New Java Project dialog box, type a name for your project and
then click Finish.

 In Figure 3-7, I type the name MyFirstProject.

 If you click Next instead of Finish, you see some other options that you
don’t need right now. So to avoid any confusion, just click Finish.

 Clicking Finish brings you back to Eclipse’s workbench, with MyFirst
Project in the Package Explorer, as shown in Figure 3-8.

 The next step is to create a new Java source code file.

Figure 3-7:
Getting

Eclipse to
create a

new project.

61 Chapter 3: Running Programs

Figure 3-8:
Your project

appears in
Eclipse’s
Package
Explorer.

 4. Select your newly created project in the Package Explorer.

 To create Figure 3-8, I selected MyFirstProject instead of SomeOther
Project.

 5. In Eclipse’s main menu, choose File➪New➪Class.

 Eclipse’s New Java Class dialog box appears (see Figure 3-9).

 Java programmers normally divide their code into one or more packages.
A typical package has a name like java.util or org.allyourcode.
images. In Figure 3-9, Eclipse is warning me that I’m not naming a pack-
age to contain my project’s code. So the code goes into a nondescript
thing called Java’s default package. Java’s default package is a package
with no name — a catchall location for code that isn’t otherwise pack-
aged. Packages are great for managing big programming projects, but
this book contains no big programming projects. So, in this example (and
in all of this book’s examples), I choose to ignore the warning. For more
info about Java packages, see Chapter 18.

 Like every other windowed environment, Eclipse provides many ways
to accomplish the same task. Instead of choosing File➪New➪Class, you
can right-click MyFirstProject in the Package Explorer in Windows
(or control-click MyFirstProject in the Package Explorer on a Mac).
In the resulting context menu, choose New➪Class. You can also start by
pressing Alt+Shift+N in Windows (or Option+⌘+N on a Mac). The choice
of clicks and keystrokes is up to you.

 6. In the New Java Class dialog box’s Name field, type the name of your
new class.

 In this example, I use the name MyFirstJavaClass, with no blank
spaces between any of the words in the name. (Refer to Figure 3-9.)

62 Part I: Getting Started with Java Programming

Figure 3-9:
Getting

Eclipse to
create a

new Java
class.

 The name in the New Java Class dialog box must not have blank spaces.
And the only allowable punctuation symbol is the underscore charac-
ter (_). You can name your class MyFirstJavaClass or My_First_
Java_Class, but you can’t name it My First Java Class or Java
Class,MyFirst.

 7. Put a check mark in the public static void main(String[]
args)check box.

 Your check mark tells Eclipse to create some boilerplate Java code.

 8. Accept the defaults for everything else in the New Java Class dialog
box (in other words, click Finish).

 You can even ignore the “Default Package Is Discouraged” warning near
the top of the dialog box.

 Clicking Finish brings you back to Eclipse’s workbench. Now MyFirst
Project contains a file named MyFirstJavaClass.java. For your
convenience, the MyFirstJavaClass.java file already has some code
in it. Eclipse’s editor displays the Java code (see Figure 3-10).

63 Chapter 3: Running Programs

Figure 3-10:
Eclipse

writes some
code in the

Editor.

 9. Replace an existing line of code in your new Java program.

 Type a line of code in Eclipse’s Editor. Replace the line

// TODO Auto-generated method stub

 with the line

System.out.println("Chocolate, royalties, sleep");

 Copy the new line of code exactly as you see it in Listing 3-1.

	 •	Spell	each	word	exactly	the	way	I	spell	it	in	Listing	3-1.

	 •	Capitalize	each	word	exactly	the	way	I	do	in	Listing	3-1.

	 •	Include	all	the	punctuation	symbols — the	dots,	the	quotation	
marks, the semicolon, everything.

	 •	Distinguish	between	the	lowercase	letter	l and the digit 1. The
word println tells the computer to print a whole line. Each char-
acter in the word println is a lowercase letter. The word contains
no digits.

Listing 3-1: A Program to Display the Things I Like

public class MyFirstJavaClass {

 /**
 * @param args
 */
 public static void main(String[] args) {
 System.out.println("Chocolate, royalties, sleep");

 }

}

64 Part I: Getting Started with Java Programming

 Java is case-sensitive, which means that system.out.printLn isn’t the
same as System.out.println. If yOu tyPe system.out.printLn,
your progrAm won’t worK. Be sUre to cAPItalize your codE eXactLy as it
is in LiSTIng 3-1.

 If you copy and paste code from an ebook, check to make sure that the
quotation marks in the code are straight quotation marks (""), not curly
quotation marks (“”). In a Java program, straight quotation marks are
good; curly quotation marks are troublesome.

 If you typed everything correctly, you see the stuff in Figure 3-11.

Figure 3-11:
A Java

program in
the Eclipse

editor.

Do I see formatting in my Java program?
When you use Eclipse’s editor to write a Java
program, you see words in various colors.
Certain words are always blue. Other words
are always black. You even see some bold and
italic phrases. You may think you see formatting,
but you don’t. Instead, what you see is called
syntax coloring or syntax highlighting.

No matter what you call it, the issue is as follows:

 ✓ With Microsoft Word, things like bold for-
matting are marked inside a document.
When you save MyPersonalDiary.
docx, the instructions to make the words
“love” and “hate” bold are recorded inside
the MyPersonalDiary.docx file.

 ✓ With a Java program editor, things like bold
and coloring aren’t marked inside the Java

program file. Instead, the editor displays
each word in a way that makes the Java
program easy to read.

For example, in a Java program, certain
words (words like class, public, and
void) have their own special meanings. So
Eclipse’s editor displays class, public,
and void in bold, reddish letters. When I
save my Java program file, the computer
stores nothing about bold, colored letters in
my Java program file. But the editor uses its
discretion to highlight special words with red-
dish coloring.

Some other editors may display the same words
in a blue font. Another editor (like Windows
Notepad) displays all words in plain old black.

65 Chapter 3: Running Programs

 If you don’t type the code exactly as it’s shown in Listing 3-1, you may
see jagged red underlines, tiny rectangles with X-like markings inside
them, or other red marks in the Editor (see Figure 3-12).

Figure 3-12:
A Java pro-
gram typed
incorrectly.

 The red marks in Eclipse’s editor refer to compile-time errors in your
Java code. A compile-time error (also known as a compiler error) is an
error that prevents the computer from translating your code. (See the
talk about code translation in Chapter 1.)

 The error markers in Figure 3-12 appear on line 8 of the Java program.
Line numbers appear in the editor’s left margin. To make Eclipse’s editor
display line numbers, choose Window➪Preferences (on Windows) or
Eclipse➪Preferences (on a Mac). Then choose General➪Editors➪Text
Editors. Finally, put a check mark in the Show Line Numbers check box.

 To fix compile-time errors, you must become a dedicated detective. You
join an elite squad known as Law & Order: Java Programming Unit. You
seldom find easy answers. Instead, you comb the evidence slowly and
carefully for clues. You compare everything you see in the editor, char-
acter by character, with my code in Listing 3-1. You don’t miss a single
detail, including spelling, punctuation, and uppercase versus lowercase.

 Eclipse has a few nice features to help you find the source of a compile-
time error. For example, you can hover over the jagged red underline.
When you do, you see a brief explanation of the error along with some
suggestions for repairing the error — some quick fixes (see Figure 3-13).

 In Figure 3-13, a popup tells you that Java doesn’t know what the word
system means — that is, system cannot be resolved. Near the bottom of
the figure, one of the quick fix options is to change system to System.

 When you click that Change To 'System’ (java.lang) option, Eclipse’s
editor replaces system with System. The editor’s error markers disap-
pear, and you go from the incorrect code in Figure 3-12 to the correct
code back in Figure 3-11.

66 Part I: Getting Started with Java Programming

Figure 3-13:
Eclipse

offers some
helpful

suggestions.

 10. Make any changes or corrections to the code in the Eclipse’s editor.

 When at last you see no jagged underlines or blotches in the editor,
you’re ready to try running the program.

 11. Select MyFirstJavaClass either by clicking inside the editor or by
clicking the MyFirstProject branch in the Package Explorer.

 12. In Eclipse’s main menu, choose Run➪Run As➪Java Application.

 That does the trick. Your new Java program runs in Eclipse’s Console
view. If you’re running the code in Listing 3-1, you see the Chocolate,
royalties, sleep message in Figure 3-14. It’s like being in heaven!

Figure 3-14:
Running the
program in
Listing 3-1.

67 Chapter 3: Running Programs

What can possibly go wrong?
Ridding the editor of jagged underlines is cause for celebration. Eclipse likes the look of your code,
so from that point on, it’s smooth sailing. Right?

Well, it ain’t necessarily so. In addition to some conspicuous compile-time errors, your code can
have other, less obvious errors.

Imagine someone telling you to “go to the intersection, and then rurn tight.” You notice immediately
that the speaker made a mistake, and you respond with a polite “Huh?” The nonsensical rurn tight
phrase is like a compile-time error. Your “Huh?” is like the jagged underlines in Eclipse’s editor. As
a listening human being, you may be able to guess what rurn tight means, but Eclipse’s editor never
dares to fix your code’s mistakes.

In addition to compile-time errors, some other kinds of gremlins can hide inside a Java program:

 ✓ Unchecked runtime exceptions: You have no compile-time errors, but when you run your pro-
gram, the run ends prematurely. Somewhere in the middle of the run, your instructions tell Java
to do something that can’t be done. For example, while you’re running the Mortgage program
in the “Running a Canned Java Program” section, you type 1,000,000.00 instead of 1000000.00.
Java doesn’t like the commas in the number, so your program crashes and displays a nasty-
looking message, as shown in the figure.

 This is an example of an unchecked runtime exception — the equivalent of someone telling
you to turn right at the intersection when the only thing to the right is a big brick wall. Eclipse’s
editor doesn’t warn you about an unchecked runtime exception because, until you run the
program, the computer can’t predict that the exception will occur.

 ✓ Logic errors: You see no error markers in Eclipse’s editor, and when you run your code, the
program runs to completion. But the answer isn’t correct. Instead of $552.20 in the figure, the
output is $552,200,000.00. The program wrongly tells you to pay thousands of times what your
house is worth and tells you to pay this amount each month! It’s the equivalent of being told
to turn right instead of turning left. You can drive in the wrong direction for a very long time.

(continued)

68 Part I: Getting Started with Java Programming

What’s All That Stuff in
Eclipse’s Window?

Believe it or not, an editor once rejected one of my book proposals. In the
margins, the editor scribbled “This is not a word” next to things like “can’t,”
“it’s,” and “I’ve.” To this day, I still do not know what this editor did not like
about contractions. My own opinion is that language always needs to expand.
Where would we be without a new words — words like dotcom, infomercial,
and vaporware?

 Logic errors are the most challenging errors to find and to fix. And worst of all, logic errors often
go unnoticed. In March 1985, I got a monthly home heating bill for $1,328,932.21. Clearly, some
computer had printed the incorrect amount. When I called the gas company to complain about
it, the telephone service representative said, “Don’t be upset. Pay only half that amount.”

 ✓ Compile-time warnings: A warning isn’t as severe as an error message. So, when Eclipse
notices something suspicious in your program, the editor displays a jagged yellow underline,
a tiny yellow icon containing an exclamation point, and a few other not-so-intrusive clues.

 For example, in the figure below I add something about amount = 10 to the code from Listing
3-1. (It’s that bit on line 8.) The problem is, I never make use of the amount or of the number
10 anywhere in my program. With its faint yellow markings, Eclipse effectively tells me “Your
amount = 10 code isn’t bad enough to be a show-stopper. Eclipse can still manage to run
your program. But are you sure you want amount = 10 (the stuff that seems to serve no
purpose) in your program?”

 Imagine being told to “turn when you reach the intersection.” The direction may be just fine.
But if you’re suspicious, you ask, “Which way should I turn? Left or right?”

 When you’re sure that you know what you’re doing, you can ignore warnings and worry about
them at some later time. But a warning can be an indicator that something more serious is
wrong with your code. So my sweeping recommendation is this: Pay attention to warnings. But,
if you can’t figure out why you’re getting a particular warning, don’t let the warning prevent you
from moving forward.

(continued)

69 Chapter 3: Running Programs

Even the Oxford English Dictionary (the last word in any argument about
words) grows by more than 4,000 entries each year. That’s an increase of
more than one percent per year. It’s about 11 new words per day!

The fact is, human thought is like a big high-rise building. You can’t build the
fiftieth floor until you’ve built at least part of the forty-ninth. You can’t talk about
spam until you have a word like e-mail. With all that goes on these days, you need
verbal building blocks. That’s why this section contains a bunch of new terms.

In this section, each newly defined term describes an aspect of the Eclipse
IDE. So before you read all this Eclipse terminology, I provide the following
disclaimers:

 ✓ This section is optional reading. Refer to this section if you have trouble
understanding some of this book’s instructions. But if have no trouble
navigating the Eclipse IDE, don’t complicate things by fussing over
the terminology in this section.

 ✓ This section provides explanations of terms, not formal definitions
of terms. Yes, my explanations are fairly precise, but no, they’re not
airtight. Almost every description in this section has hidden exceptions,
omissions, exemptions, and exclusions. Take the paragraphs in this sec-
tion to be friendly reminders, not legal contracts.

 ✓ Eclipse is a very useful tool. But Eclipse isn’t officially part of the Java
ecosystem. Although I don’t describe details in this book, you can write
Java programs without ever using Eclipse.

Understanding the big picture
Your tour of Eclipse begins with a big Burd’s eye view.

 ✓ Workbench: The Eclipse desktop (refer to Figure 3-3). The workbench is
the environment in which you develop code.

 ✓ Area: A section of the workbench. The workbench in Figure 3-3 contains
five areas. To illustrate the point, I’ve drawn borders around each of the
areas (see Figure 3-15).

 ✓ Window: A copy of the Eclipse workbench. With Eclipse, you can have
several copies of the workbench open at once. Each copy appears in its
own window.

 ✓ Action: A choice that’s offered to you, typically when you click some-
thing. For example, when you choose File➪New in Eclipse’s main menu
bar, you see a list of new things that you can create. The list usually
includes Project, Folder, File, and Other, but it may also include things
like Package, Class, and Interface. Each of these things (each item in the
menu) is called an action.

70 Part I: Getting Started with Java Programming

Figure 3-15:
The work-

bench is
divided into

areas.

Views, editors, and other stuff
The next bunch of terms deals with things called views, editors, and tabs.

 You may have difficulty understanding the difference between views and edi-
tors. (A view is like an editor, which is like a view, or something like that.)
If views and editors seem the same to you, and you’re not sure you can tell
which is which, don’t be upset. As an ordinary Eclipse user, the distinction
between views and editors comes naturally as you gain experience using the
workbench. You rarely have to decide whether the thing you’re using is a view
or an editor.

If you ever have to decide what a view is as opposed to an editor, here’s what
you need to know:

 ✓ View: A part of the Eclipse workbench that displays information for you
to browse. In the simplest case, a view fills up an area in the workbench.
For example, in Figure 3-3, the Package Explorer view fills up the left-
most area.

 Many views display information as lists or trees. For example, in
Figure 3-10, the Package Explorer view contains a tree.

 You can use a view to make changes to things. For example, to delete
SomeOtherProject in Figure 3-10, right-click the SomeOtherProject
branch in the Package Explorer view. (On a Mac, control-click the Some
OtherProject branch.) Then, in the resulting context menu, choose
Delete.

71 Chapter 3: Running Programs

 When you use a view to change something, the change takes place imme-
diately. For example, when you choose Delete in the Package Explorer’s
context menu, whatever item you’ve selected is deleted immediately.
In a way, this behavior is nothing new. The same kind of thing happens
when you recycle a file using Windows Explorer or trash a file using the
Macintosh Finder.

 ✓ Editor: A part of the Eclipse workbench that displays information for you
to modify. A typical editor displays information in the form of text. This
text can be the contents of a file. For example, an editor in Figure 3-10
displays the contents of the MyFirstJavaClass.java file.

 When you use an editor to change something, the change doesn’t
take place immediately. For example, look at the editor in Figure 3-10.
This editor displays the contents of the MyFirstJavaClass.java
file. You can type all kinds of things in the editor. Nothing happens to
MyFirstJavaClass.java until you choose File➪Save from Eclipse’s
menu bar. Of course, this behavior is nothing new. The same kind of
thing happens when you work in Microsoft Word or in any other word-
processing program.

 Like other authors, I occasionally become lazy and use the word “view”
when I really mean “view or editor.” When you catch me doing this, just
shake your head and move onward. When I’m being very careful, I use
the official Eclipse terminology. I refer to views and editors as parts of
the Eclipse workbench. Unfortunately, this “parts” terminology doesn’t
stick in peoples’ minds very well.

An area of the Eclipse workbench might contain several views or several
editors. Most Eclipse users get along fine without giving this “several views”
business a second thought (or even a first thought). But if you care about the
terminology surrounding tabs and active views, here’s the scoop:

 ✓ Tab: Something that’s impossible to describe except by calling it a
“tab.” That which we call a tab by any other name would move us
as well from one view to another or from one editor to another. The
important thing is, views can be stacked on top of one another. Eclipse
displays stacked views as though they’re pages in a tabbed notebook.
For example, Figure 3-14 displays one area of the Eclipse workbench.
The area contains five views (the Problems view, the Javadoc view, the
Declaration view, the Search view, and the Console view). Each view
has its own tab.

 A bunch of stacked views is called a tab group. To bring a view in the
stack to the forefront, you click that view’s tab.

 And, by the way, all this stuff about tabs and views holds true for tabs
and editors. The only interesting thing is the way Eclipse uses the word
“editor.” In Eclipse, each tabbed page of the editor area is an individual
editor. For example, the Editor area in Figure 3-16 contains three editors
(not three tabs belonging to a single editor).

72 Part I: Getting Started with Java Programming

Figure 3-16:
The editor

area
 contains

three
editors.

 ✓ Active view or active editor: In a tab group, the view or editor that’s in
front.

 In Figure 3-16, the MyFirstJavaClass.java editor is the active editor.
The Mortgage.java and ThingsILike.java editors are inactive.

What’s inside a view or an editor?
The next several terms deal with individual views, individual editors, and
individual areas.

 ✓ Toolbar: The bar of buttons (and other little things) at the top of a view
(see Figure 3-17).

Figure 3-17:
The

Package
Explorer

view’s
toolbar.

 ✓ Menu button: A downward-pointing arrow in the toolbar. When you click
the menu button, a drop-down list of actions appears (see Figure 3-18).
Which actions you see in the list varies from one view to another.

73 Chapter 3: Running Programs

Figure 3-18:
Clicking the

Package
Explorer

view’s menu
button.

 ✓ Close button: A button that gets rid of a particular view or editor (see
Figure 3-19).

Figure 3-19:
An editor’s

Close
button.

 ✓ Chevron: A double arrow indicating that other tabs should appear in
a particular area (but that the area isn’t wide enough). The chevron
in Figure 3-20 has a little number 2 beside it. The 2 tells you that, in
addition to the two visible tabs, two tabs are invisible. Clicking the
chevron brings up a hover tip containing the labels of all the tabs (see
Figure 3-20).

Figure 3-20:
The chevron

indicates
that two

editors are
hidden.

 ✓ Marker bar: The vertical ruler on the left edge of the editor area. Eclipse
displays tiny alert icons, called markers, inside the marker bar. (For
example, refer to Figure 3-12.)

74 Part I: Getting Started with Java Programming

Returning to the big picture
The next two terms deal with Eclipse’s overall look and feel.

 ✓ Layout: An arrangement of certain views. The layout in Figure 3-3 has
seven views, of which four are easily visible:

	 •	At	the	far	left,	you	see	the	Package	Explorer	view.

	 •	On	the	far	right,	you	have	the	Task	List	view	and	the	Outline	view.

	 •	Near	the	bottom,	you	get	the	Problems,	Javadoc,	Declaration,	and	
Console views.

 Along with all these views, the layout contains a single editor area. Any
and all open editors appear inside this editor area.

 ✓ Perspective: A very useful layout. If a particular layout is really useful,
someone gives that layout a name. And if a layout has a name, you
can use the layout whenever you want. For example, the workbench
of Figure 3-3 displays Eclipse’s Java perspective. By default, the Java
perspective contains six views in an arrangement very much like the
arrangement shown in Figure 3-3.

 The Console view appears in Figure 3-3, but the Console view doesn’t
always appear as part of the Java perspective. Normally, the Console
view appears automatically when you run a text-based Java program. If
you want to force the Console view to appear, choose Window➪Show
View➪Other. In the resulting Show View dialog box, expand the General
branch. Finally, within that General branch, double-click the Console
item.

 Along with all these views, the Java perspective contains an editor area.
(Sure, the editor area has several tabs, but the number of tabs has noth-
ing to do with the Java perspective.)

 You can switch among perspectives by choosing Window➪Open Per-
spective in Eclipse’s main menu bar. This book focuses almost exclu-
sively on Eclipse’s Java perspective. But if you like poking around, visit
some of the other perspectives to get a glimpse of Eclipse’s power and
versatility.

 Check out the article “Making Sense of Java’s API Documentation” (and more) online
at www.dummies.com/extras/beginningprogrammingwithjava

Part II
Writing Your Own

Java Programs

http://www.dummies.com/extras/beginningprogrammingwithjava

In this part . . .
 ✓ Dissecting programs and examining the pieces

 ✓ Working with numbers

 ✓ Working with things that aren’t numbers

Chapter 4

Exploring the Parts of a Program
In This Chapter
▶ Identifying the words in a Java program

▶ Using punctuation and indentation

▶ Understanding Java statements and methods

I work in the science building at a liberal arts college. When I walk past the
biology lab, I always say a word of thanks under my breath. I’m thankful

for not having to dissect small animals. In my line of work, I dissect computer
programs instead. Computer programs smell much better than preserved
dead animals. Besides, when I dissect a program, I’m not reminded of my own
mortality.

In this chapter, I invite you to dissect a program with me. I have a small pro-
gram, named ThingsILike. I cut apart the program and carefully investigate
the program’s innards. Get your scalpel ready. Here we go!

Checking Out Java Code
for the First Time

I have a confession to make. The first time I look at somebody else’s computer
program, I feel a bit queasy. The realization that I don’t understand something
(or many things) in the code makes me nervous. I’ve written hundreds (maybe
thousands) of programs, but I still feel insecure when I start reading someone
else’s code.

The truth is, learning about a computer program is a bootstrapping experi-
ence. First, I gawk in awe of the program. Then I run the program to see what
it does. Then I stare at the program for a while or read someone’s explanation
of the program and its parts. Then I gawk a little more and run the program
again. Eventually, I come to terms with the program. Don’t believe the wise
guys who say they never go through these steps. Even experienced program-
mers approach a new project slowly and carefully.

78 Part II: Writing Your Own Java Programs

Behold! A program!
In Listing 4-1, you get a blast of Java code. Like all novice programmers, you’re
expected to gawk humbly at the code. But don’t be intimidated. When you get
the hang of it, programming is pretty easy. Yes, it’s fun, too.

Listing 4-1: A Simple Java Program

/*
 * A program to list the good things in life
 * Author: Barry Burd, BeginProg@allmycode.com
 * February 13, 2014
 */

class ThingsILike {

 public static void main(String args[]) {
 System.out.println("Chocolate, royalties, sleep");
 }
}

When I run the program in Listing 4-1, I get the result shown in Figure 4-1:
The computer shows the words Chocolate, royalties, sleep on the
screen. Now, I admit that writing and running a Java program is a lot of work
just to get the words Chocolate, royalties, sleep to appear on some-
body’s computer screen, but every endeavor has to start somewhere.

Figure 4-1:
Running the
program in
Listing 4-1.

 Most of the programs in this book are text-based programs. These programs
do their input and output almost exclusively in Eclipse’s Console view. In con-
trast, a GUI (Graphical User Interface) program displays windows, buttons, text
fields, and other widgets to interact with the user. You can see GUI versions of
the program in Listing 4-1, and in many other examples from this book, by vis-
iting the book’s website (http://allmycode.com/BeginProg).

http://allmycode.com/beginprog

79 Chapter 4: Exploring the Parts of a Program

You can run the code in Listing 4-1 on your computer. Here’s how:

 1. Follow the instructions in Chapter 2 for installing Eclipse.

 2. Next, follow the instructions in the first half of Chapter 3.

 Those instructions tell you how to run the project named 03-01, which
comes in a download from this book’s website (http://allmycode.
com/BeginProg). To run the code in Listing 4-1, follow the same instruc-
tions for the 04-01 project, which comes in the same download.

What the program’s lines say
If the program in Listing 4-1 ever becomes famous, someone will write a Cliffs
Notes book to summarize the program. The book will be really short because
you can summarize the action of Listing 4-1 in just one sentence. Here’s the
sentence:

Display Chocolate, royalties, sleep
on the computer screen.

Now compare the preceding sentence with the bulk in Listing 4-1. Because
Listing 4-1 has so many more lines, you may guess that Listing 4-1 has lots
of boilerplate code. Well, your guess is correct. You can’t write a Java pro-
gram without writing the boilerplate stuff, but, fortunately, the boilerplate
text doesn’t change much from one Java program to another. Here’s my best
effort at summarizing all the Listing 4-1 text in 66 words or fewer:

This program lists the good things in life.
Barry Burd wrote this program on February 13, 2014.
Barry realizes that you may have questions about this
code, so you can reach him at BeginProg@allmycode.com,
on Twitter at @allmycode, or on Facebook at /allmycode.

This code defines a Java class named ThingsILike.
 Here's the main starting point for the instructions:
 Display Chocolate, royalties, sleep
 on the screen.

The rest of this chapter (about 4,500 more words) explains the Listing 4-1
code in more detail.

http://allmycode.com/beginprog
http://allmycode.com/beginprog

80 Part II: Writing Your Own Java Programs

The Elements in a Java Program
That both English and Java are called languages is no coincidence. You use
a language to express ideas. English expresses ideas to people, and Java
expresses ideas to computers. What’s more, both English and Java have
things like words, names, and punctuation. In fact, the biggest difference
between the two languages is that Java is easier to learn than English. (If
English were easy, then computers would understand English. Unfortunately,
they can’t.)

Take an ordinary English sentence and compare it with the code in Listing 4-1.
Here’s the sentence:

Suzanne says “eh” because, as you know, she lives in Canada.

In your high school grammar class, you worried about verbs, adjectives, and
other such things. But in this book, you’ll think in terms of keywords and
identifiers, as summarized in Figure 4-2.

Figure 4-2:
The things
you find in

a simple
sentence.

Suzanne’s sentence has all kinds of things in it. They’re the same kinds of
things that you find in a computer program. So here’s the plan: Compare the
elements in Figure 4-1 with similar elements in Listing 4-1. You already under-
stand English, so you use this understanding to figure out some new things
about Java.

But first, here’s a friendly reminder: In the next several paragraphs, I draw
comparisons between English and Java. As you read these paragraphs, it’s
important to keep an open mind. For example, in comparing Java with English,
I may write that “names of things aren’t the same as dictionary words.” Sure,
you can argue that some dictionaries list proper nouns and that some people
have first names like Hope, Prudence, and Spike, but please don’t. You’ll get
more out of the reading if you avoid nitpicking. Okay? Are we still friends?

81 Chapter 4: Exploring the Parts of a Program

Keywords
A keyword is a dictionary word — a word that’s built right into a language.

In Figure 4-2, a word like “says” is a keyword because “says” plays the same
role whenever it’s used in an English sentence. The other keywords in the
Suzanne sentence are “because,” “as,” “you,” “know,” “she,” “lives,” and “in.”

Computer programs have keywords, too. In fact, the program in Listing 4-1
uses four of Java’s keywords (shown in bold):

class ThingsILike {

 public static void main(String args[]) {

Each Java keyword has a specific meaning — a meaning that remains unchan-
ged from one program to another. For example, whenever I write a Java pro-
gram, the word public always signals a part of the program that’s accessible
to any other piece of code.

 The java proGRAMMing lanGUage is case-sensitive. ThIS MEans that if you
change a lowerCASE LETTer in a wORD TO AN UPPercase letter, you chANge
the wORD’S MEaning. ChangiNG CASE CAN MakE the enTIRE WORD GO FROM
BeiNG MEANINGFul to bEING MEaningless. In Listing 4-1, you can’t replace
public with Public. If you do, the WHOLE PROGRAM STOPS WORKING.

This chapter has little or no detail about the meanings of the keywords class,
public, static, and void. You can peek ahead at the material in other
chapters, but you can also get along by cheating. When you write a program,
just start with

class SomethingOrOther {

and then paste the text

public static void main(String args[]) {

into your code. In your first few programs, this strategy serves you well.

Table 4-1 has a complete list of Java keywords.

82 Part II: Writing Your Own Java Programs

Table 4-1 Java Keywords
abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

 In Java, the words true, false, and null have specific meanings. Like the
keywords in Table 4-1, you can’t use true, false, and null to mean anything
other than what they normally mean in a Java program. But for reasons that
concern only the fussiest Java experts, true, false, and null are not called
Java keywords. One way or another, if you scribble the words true, false,
and null into Table 4-1, you’ll be okay.

Here’s one thing to remember about keywords: In Java, each keyword has an
official, predetermined meaning. The people at Oracle, who have the final say
on what constitutes a Java program, created all of Java’s keywords. You can’t
make up your own meaning for any of the Java keywords. For example, you
can’t use the word public in a calculation:

//This is BAD, BAD CODE:
public = 6;

If you try to use a keyword this way, then the compiler displays an error
message and refuses to translate your source code. It works the same way in
English. Have a baby and name it “Because.”

“Let’s have a special round of applause for tonight’s master of
ceremonies — Because O. Borel.”

You can do it, but the kid will never lead a normal life.

 Despite my ardent claims in this section, two of Java’s keywords have no mean-
ing in a Java program. Those keywords — const and goto — are reserved
for non-use in Java. If you try to create a variable named goto, Eclipse displays
an Invalid VariableDeclaratorId error message. The creators of Java
figure that, if you use either of the words const or goto in your code, you
should be told politely to move to the C++ programmers’ table.

83 Chapter 4: Exploring the Parts of a Program

Identifiers that you or I can define
I like the name Suzanne, but if you don’t like traditional names, then make up a
brand new name. You’re having a new baby. Call her “Deneen” or “Chrisanta.”
Name him “Belton” or “Merk.”

A name is a word that identifies something, so I’ll stop calling these things
names and start calling them identifiers. In computer programming, an identi-
fier is a noun of some kind. An identifier refers to a value, a part of a program,
a certain kind structure, or any number of things.

Listing 4-1 has two identifiers that you or I can define on our own. They’re the
made-up words ThingsILike and args.

class ThingsILike {

 public static void main(String args[]) {

Just as the names Suzanne and Chrisanta have no special meaning in English,
so the names ThingsILike and args have no special meaning in Java. In
Listing 4-1, I use ThingsILike for the name of my program, but I could also
have used a name like GooseGrease, Enzyme, or Kalamazoo. I have to put
(String someName[]) in my program, but I could use (String args[]),
(String commandLineArguments[]), or (String cheese[]).

 Do as I say, not as I do. Make up sensible, informative names for the things in
your Java programs. Names like GooseGrease are cute, but they don’t help
you keep track of your program-writing strategy.

 When I name my Java program, I can use ThingsILike or GooseGrease, but
I can’t use the word public. Words like class, public, static, and void
are keywords in Java.

The args in (String args[]) holds anything extra that you type when
you issue the command to run a Java program. For example, if you get the
program to run by typing java ThingsILike won too 3, then args
stores the extra values won, too, and 3. As a beginning programmer, you
don’t need to think about this feature of Java. Just paste (String args[])
into each of your programs.

Identifiers with agreed-upon meanings
Many people are named Suzanne, but only one country is named Canada.
That’s because there’s a standard, well-known meaning for the word “Canada.”
It’s the country with a red maple leaf on its flag. If you start your own country,
you should avoid naming it Canada because naming it Canada would just con-
fuse everyone. (I know, a town in Kentucky is named Canada, but that doesn’t
count. Remember, you should ignore exceptions like this.)

84 Part II: Writing Your Own Java Programs

Most programming languages have identifiers with agreed-upon meanings. In
Java, almost all these identifiers are defined in the Java API. Listing 4-1 has
five such identifiers. They’re the words main, String, System, out, and
println:

 public static void main(String args[]) {
 System.out.println("Chocolate, royalties, sleep");
 }

Here’s a quick rundown on the meaning of each of these names (and more
detailed descriptions appear throughout this book):

 ✓ main: The main starting point for execution in every Java program.

 ✓ String: A bunch of text; a row of characters, one after another.

 ✓ System: A canned program in the Java API. This program accesses some
features of your computer that are outside the direct control of the Java
Virtual Machine (JVM).

 ✓ out: The place where a text-based program displays its text. (For a
program running in Eclipse, the word out represents the Console view.
To read more about text-based programs, check the first several para-
graphs of Chapter 3.)

 ✓ println: Display text on your computer screen.

 The name println comes from the words “print a line.” If you were allowed
to write the name in uppercase letters, it would be PRINTLN, with a letter L
near the end of the word. When the computer executes println, the com-
puter puts some text in Eclipse’s Console view and then immediately moves to
the beginning of the next line in preparation for whatever else will appear in the
Console view.

 Strictly speaking, the meanings of the identifiers in the Java API aren’t cast in
stone. Although you can make up your own meanings for words like System
or println, doing so isn’t a good idea — because you’d confuse the dickens
out of other programmers, who are used to the standard API meanings for
these familiar identifier names.

Literals
A literal is a chunk of text that looks like whatever value it represents. In
Suzanne’s sentence (refer to Figure 4-2), “eh” is a literal because “eh” refers
to the word “eh.”

Programming languages have literals, too. For example, in Listing 4-1, the
stuff in quotes is a literal:

System.out.println("Chocolate, royalties, sleep");

85 Chapter 4: Exploring the Parts of a Program

When you run the ThingsILike program, you see the words Chocolate,
royalties, sleep on the screen. In Listing 4-1, the text "Chocolate,
royalties, sleep" refers to these words, exactly as they appear on the
screen (minus the quotation marks).

Most of the numbers that you use in computer programs are literals. If you
put the statement

mySalary = 1000000.00;

in a computer program, then 1000000.00 is a literal. It stands for the number
1000000.00 (one million).

If you don’t enjoy counting digits, you can put the following statement in your
Java 7 program:

mySalary = 1_000_000.00;

Starting with Java 7, numbers with underscores are permissible as literals.

 In versions of Java before Java 7, you cannot use numbers such as
1_000_000.00 in your code.

 Different countries use different number separators and different number
formats. For example, in the United States, you write 1,234,567,890,55. In
France, you write 1234567890,55. In India, you group digits in sets of two and
three. You write 1,23,45,67,890.55. You can’t put a statement like mySalary =
1,000,000.00 in your Java program. Java’s numeric literals don’t have any
commas in them. But you can write mySalary = 10_00_000.00 for easy-
to-read programming in India. And for a program’s output, you can display
numbers like 1234567890,55 using Java’s Locale and NumberFormat classes.
(For more on Locale and NumberFormat, check out Chapter 18.)

Punctuation
A typical computer program has lots of punctuation. For example, consider
the program in Listing 4-1:

class ThingsILike {

 public static void main(String args[]) {
 System.out.println("Chocolate, royalties, sleep");
 }
}

Each bracket, each brace, each squiggle of any kind plays a role in making the
program meaningful.

86 Part II: Writing Your Own Java Programs

In English, you write all the way across one line and then you wrap your text to
the start of the next line. In programming, you seldom work this way. Instead,
the code’s punctuation guides the indenting of certain lines. The indentation
shows which parts of the program are subordinate to which other parts. It’s as
though, in English, you wrote Suzanne’s sentence like this:

Suzanne says “eh” because
,
 as you know
,
she lives in Canada.

The diagrams in Figures 4-3 and 4-4 show you how parts of the ThingsILike
program are contained inside other parts. Notice how a pair of curly braces
acts like a box. To make the program’s structure visible at a glance, you
indent all the stuff inside of each box.

Figure 4-3: A
pair of curly
braces acts

like a box.

Figure 4-4:
The ideas in
a computer

program
are nested
inside one

another.

 I can’t emphasize this point enough. If you don’t indent your code or if you
indent but you don’t do it carefully, then your code still compiles and runs
correctly. But this successful run gives you a false sense of confidence. The
minute you try to update some poorly indented code, you become hopelessly
confused. So take my advice: Keep your code carefully indented at every step
in the process. Make your indentation precise, whether you’re scratching out
a quick test program or writing code for a billionaire customer.

 Eclipse can indent your code automatically for you. Select the .java file whose
code you want to indent. Then, in Eclipse’s main menu, choose Source➪Format.
Eclipse rearranges your lines in the editor, indenting things that should be
indented and generally making your code look good.

87 Chapter 4: Exploring the Parts of a Program

Comments
A comment is text that’s outside the normal flow. In Figure 4-2, the words “A
comment:” aren’t part of the Suzanne sentence. Instead, these words are
about the Suzanne sentence.

The same is true of comments in computer programs. The first five lines in
Listing 4-1 form one big comment. The computer doesn’t act on this comment.
There are no instructions for the computer to perform inside this comment.
Instead, the comment tells other programmers something about your code.

Comments are for your own benefit, too. Imagine that you set aside your code
for a while and work on something else. When you return later to work on the
code again, the comments help you remember what you were doing.

The Java programming language has three kinds of comments:

 ✓ Traditional comments: The comment in Listing 4-1 is a traditional
comment. The comment begins with /* and ends with */. Everything
between the opening /* and the closing */ is for human eyes only.
Nothing between /* and */ gets translated by the compiler.

 The second, third, and fourth lines in Listing 4-1 have extra asterisks. I
call them “extra” because these asterisks aren’t required when you create
a comment. They just make the comment look pretty. I include them in
Listing 4-1 because, for some reason that I don’t entirely understand,
most Java programmers add these extra asterisks.

 ✓ End-of-line comments: Here’s some code with end-of-line comments:

class ThingsILike { //Two things are missing

 public static void main(String args[]) {
 System.out.println("sleep"); // Missing from here
 }
}

 An end-of-line comment starts with two slashes and goes to the end of a
line of type.

 You may hear programmers talk about commenting out certain parts of
their code. When you’re writing a program and something’s not work-
ing correctly, it often helps to try removing some of the code. If nothing
else, you find out what happens when that suspicious code is removed.
Of course, you may not like what happens when the code is removed, so
you don’t want to delete the code completely. Instead, you turn your ordi-
nary Java statements into comments. For example, turn System.out.
println("Sleep"); into /* System.out.println("Sleep"); */.
This keeps the Java compiler from seeing the code while you try to figure
out what’s wrong with your program.

88 Part II: Writing Your Own Java Programs

 ✓ Javadoc comments: A special Javadoc comment is any traditional com-
ment that begins with an extra asterisk.

/**
 * Print a String and then terminate the line.
 */

 This is a cool Java feature. The software that you can download from
java.sun.com includes a little program called javadoc. The javadoc
program looks for these special comments in your code. The program
uses these comments to create a brand new web page — a customized
documentation page for your code. To find out more about turning
Javadoc comments into web pages, visit this book’s website (http://
allmycode.com/BeginProg).

Understanding a Simple Java Program
The following sections present, explain, analyze, dissect, and otherwise
demystify the Java program in Listing 4-1.

What is a method?
You’re working as an auto mechanic in an upscale garage. Your boss, who’s
always in a hurry and has a habit of running words together, says, “FixThe
Alternator on that junkyOldFord.” Mentally, you run through a list of tasks.
“Drive the car into the bay, lift the hood, get a wrench, loosen the alternator
belt,” and so on. Three things are going on here:

 ✓ You have a name for the thing you’re supposed to do. The name is
FixTheAlternator.

 ✓ In your mind, you have a list of tasks associated with the name FixThe
Alternator. The list includes “Drive the car into the bay, lift the hood,
get a wrench, loosen the alternator belt,” and so on.

 ✓ You have a grumpy boss who’s telling you to do all this work. Your
boss gets you working by saying, “FixTheAlternator.” In other words,
your boss gets you working by saying the name of the thing you’re sup-
posed to do.

In this scenario, using the word method wouldn’t be a big stretch. You have a
method for doing something with an alternator. Your boss calls that method
into action, and you respond by doing all the things in the list of instructions
that you’ve associated with the method.

http://allmycode.com/beginprog
http://allmycode.com/beginprog

89 Chapter 4: Exploring the Parts of a Program

Java methods
If you believe all that stuff in the preceding section, then you’re ready to read
about Java methods. In Java, a method is a list of things to do. Every method
has a name, and you tell the computer to do the things in the list by using the
method’s name in your program.

I’ve never written a program to get a robot to fix an alternator. But, if I were
to, the program might include a method named FixTheAlternator. The list
of instructions in my FixTheAlternator method would look something like
the text in Listing 4-2.

Listing 4-2: A Method Declaration

void FixTheAlternator() {
 DriveInto(car, bay);
 Lift(hood);
 Get(wrench);
 Loosen(alternatorBelt);
 ...
}

Somewhere else in my Java code (somewhere outside of Listing 4-2), I need an
instruction to call my FixTheAlternator method into action. The instruc-
tion to call the FixTheAlternator method into action may look like the line
in Listing 4-3.

Listing 4-3: Calling a Method

FixTheAlternator(junkyOldFord);

 Don’t scrutinize Listings 4-2 and 4-3 too carefully. All the lines of code in
Listings 4-2 and 4-3 are fakes! I made up this code so that it looks a lot like real
Java code, but it’s not real. What’s more important, the code in Listings 4-2
and 4-3 isn’t meant to illustrate all the rules about Java. So if you have a grain
of salt handy, take it with Listings 4-2 and 4-3.

 Almost every computer programming language has something akin to Java’s
methods. If you’ve worked with other languages, you may remember things
like subprograms, procedures, functions, subroutines, Sub procedures,
or PERFORM statements. Whatever you call it in your favorite programming
language, a method is a bunch of instructions collected together and given a
new name.

90 Part II: Writing Your Own Java Programs

The declaration, the header, and the call
If you have a basic understanding of what a method is and how it works (see
preceding section), you can dig a little deeper into some useful terminology:

 ✓ If I’m being lazy, I refer to the code in Listing 4-2 as a method. If I’m not
being lazy, I refer to this code as a method declaration.

 ✓ The method declaration in Listing 4-2 has two parts. The first line (the
part with the name FixTheAlternator in it, up to but not including
the open curly brace) is called a method header. The rest of Listing 4-2
(the part surrounded by curly braces) is a method body.

 ✓ The term method declaration distinguishes the list of instructions in
Listing 4-2 from the instruction in Listing 4-3, which is known as a
method call.

For a handy illustration of all the method terminology, see Figure 4-5.

Figure 4-5:
The ter-

minology
describing

methods.

A method’s header and body are like an entry in a dictionary. An entry doesn’t
really use the word that it defines. Instead, an entry tells you what happens if
and when you use the word.

91 Chapter 4: Exploring the Parts of a Program

chocolate (choc-o-late) n. 1. The most habit-forming substance on earth.
2. Something you pay for with money from royalties. 3. The most impor-
tant nutritional element in a person’s diet.

FixTheAlternator() Drive the car into the bay, lift the hood, get the
wrench, loosen the alternator belt, and then eat some chocolate.

In contrast, a method call is like the use of a word in a sentence. A method
call sets some code in motion.

“I want some chocolate, or I’ll throw a fit.”

“FixTheAlternator on that junkyOldFord.”

 A method’s declaration tells the computer what will happen if you call the
method into action. A method call (a separate piece of code) tells the com-
puter to actually call the method into action. A method’s declaration and the
method’s call tend to be in different parts of the Java program.

The main method in a program
In Listing 4-1, the bulk of the code is the declaration of a method named main.
(Just look for the word main in the code’s method header.) For now, don’t
worry about the other words in the method header — the words public,
static, void, String, and args. I explain these words (on a need-to-know
basis) in the next several chapters.

Like any Java method, the main method is a recipe:

How to make biscuits:
 Preheat the oven.
 Roll the dough.
 Bake the rolled dough.

or

How to follow the main instructions in
the ThingsILike code:
 Display Chocolate, royalties, sleep on the screen.

The word main plays a special role in Java. In particular, you never write
code that explicitly calls a main method into action. The word main is the
name of the method that is called into action automatically when the pro-
gram begins running.

92 Part II: Writing Your Own Java Programs

When the ThingsILike program runs, the computer automatically finds the
program’s main method and executes any instructions inside the method’s
body. In the ThingsILike program, the main method’s body has only one
instruction. That instruction tells the computer to print Chocolate,
royalties, sleep on the screen.

 None of the instructions in a method are executed until the method is called
into action. But if you give a method the name main, that method is called into
action automatically.

How you finally tell the computer
to do something
Buried deep in the heart of Listing 4-1 is the single line that actually issues a
direct instruction to the computer. The line

System.out.println("Chocolate, royalties, sleep");

tells the computer to display the words Chocolate, royalties, sleep.
(If you use Eclipse, the computer displays Chocolate, royalties, sleep
in the Console view.) I can describe this line of code in at least two different
ways:

 ✓ It’s a statement. In Java, a direct instruction that tells the computer to
do something is called a statement. The statement in Listing 4-1 tells
the computer to display some text. The statements in other programs
may tell the computer to put 7 in a certain memory location or make a
window appear on the screen. The statements in computer programs do
all kinds of things.

 ✓ It’s a method call. In the “What is a method?” section, earlier in this
chapter, I describe something named a “method call.” The statement

FixTheAlternator(junkyOldFord);

 is an example of a method call, and so is

System.out.println("Chocolate, royalties, sleep");

 Java has many different kinds of statements. A method call is just one kind.

93 Chapter 4: Exploring the Parts of a Program

Ending a statement with a semicolon
In Java, each statement ends with a semicolon. The code in Listing 4-1
has only one statement in it, so only one line in Listing 4-1 ends with a
semicolon.

Take any other line in Listing 4-1, like the method header, for example. The
method header (the line with the word main in it) doesn’t directly tell the
computer to do anything. Instead, the method header describes some action
for future reference. The header announces “Just in case someone ever calls
the main method, the next few lines of code tell you what to do in response
to that call.”

 Every complete Java statement ends with a semicolon. A method call is a
statement, so it ends with a semicolon, but neither a method header nor a
method declaration is a statement.

The method named System.out.println
The statement in the middle of Listing 4-1 calls a method named System.
out.println. This method is defined in the Java API. Whenever you call the
System.out.println method, the computer displays text on its screen.

Think about names. Believe it or not, I know two people named Pauline Ott.
One of them is a nun; the other is a physicist. Of course, there are plenty
of Paulines in the English-speaking world, just as there are several things
named println in the Java API. So to distinguish the physicist Pauline Ott
from the film critic Pauline Kael, I write the full name “Pauline Ott.” And
to distinguish the nun from the physicist, I write “Sister Pauline Ott.” In
the same way, I write either System.out.println or DriverManager.
println. The first (which you use often) writes text on the computer’s
screen. The second (which you don’t use at all in this book) writes to a
database log file.

Just as Pauline and Ott are names in their own right, so System, out, and
println are names in the Java API. But to use println, you must write the
method’s full name. You never write println alone. It’s always System.
out.println or some other combination of API names.

 The Java programming language is cAsE-sEnSiTiVe. If you change a lowercase
letter to an uppercase letter (or vice versa), you change a word’s meaning. You
can’t replace System.out.println with system.out.Println. If you do,
your program won’t work.

94 Part II: Writing Your Own Java Programs

Methods, methods everywhere
Two methods play roles in the ThingsILike program. Figure 4-6 illustrates the
situation, and the next few bullets give you a guided tour.

Figure 4-6:
Calling the
System.

out.
println

method.

 ✓ There’s a declaration for a main method. I wrote the main method
myself. This main method is called automatically whenever I start run-
ning the ThingsILike program.

 ✓ There’s a call to the System.out.println method. The method call
for the System.out.println method is the only statement in the body
of the main method. In other words, calling the System.out.println
method is the only thing on the main method’s to-do list.

 The declaration for the System.out.println method is buried inside
the official Java API. For a refresher on the Java API, refer to Chapter 1.

 When I say things like “System.out.println is buried inside the API,” I’m
not doing justice to the API. True, you can ignore all the nitty-gritty Java code
inside the API. All you need to remember is that System.out.println is
defined somewhere inside that code. But I’m not being fair when I make the
API code sound like something magical. The API is just another bunch of Java
code. The statements in the API that tell the computer what it means to carry
out a call to System.out.println look a lot like the Java code in Listing 4-1.

95 Chapter 4: Exploring the Parts of a Program

The Java class
Have you heard the term object-oriented programming (also known as OOP)?
OOP is a way of thinking about computer programming problems — a way
that’s supported by several different programming languages. OOP started in
the 1960s with a language called Simula. It was reinforced in the 1970s with
another language named Smalltalk. In the 1980s, OOP took off big time with
the language C++.

Some people want to change the acronym, and call it COP — class-oriented pro-
gramming. That’s because object-oriented programming begins with something
called a class. In Java, everything starts with classes, everything is enclosed in
classes, and everything is based on classes. You can’t do anything in Java until
you’ve created a class of some kind. It’s like being on Jeopardy, hearing Alex
Trebek say, “Let’s go to a commercial” and then interrupting him by saying,
“I’m sorry, Alex. You can’t issue an instruction without putting your instruction
inside a class.”

It’s important for you to understand what a class really is, so I dare not give a
haphazard explanation in this chapter. Instead, I devote much of Chapter 17
to the question, “What is a class?” Anyway, in Java, your main method has to
be inside a class. I wrote the code in Listing 4-1, so I got to make up a name
for my new class. I chose the name ThingsILike, so the code in Listing 4-1
starts with the words class ThingsILike.

Take another look at Listing 4-1 and notice what happens after the line class
ThingsILike. The rest of the code is enclosed in curly braces. These braces
mark all the stuff inside the class. Without these braces, you’d know where
the declaration of the ThingsILike class starts, but you wouldn’t know
where the declaration ends.

It’s as though the stuff inside the ThingsILike class is in a box. (Refer to
Figure 4-3.) To box off a chunk of code, you do two things:

 ✓ You use curly braces. These curly braces tell the compiler where a chunk
of code begins and ends.

 ✓ You indent code. Indentation tells your human eye (and the eyes of other
programmers) where a chunk of code begins and ends.

Don’t forget. You have to do both.

96 Part II: Writing Your Own Java Programs

Chapter 5

Composing a Program
In This Chapter
▶ Reading input from the keyboard

▶ Editing a program

▶ Shooting at trouble

J

ust yesterday, I was chatting with my servant, RoboJeeves. (RoboJeeves
is an upscale model in the RJ-3000 line of personal robotic life-forms.)

Here’s how the discussion went:

Me: RoboJeeves, tell me the velocity of an object after it’s been falling for
three seconds in a vacuum.

RoboJeeves: All right, I will. “The velocity of an object after it’s been
falling for three seconds in a vacuum.” There, I told it to you.

Me: RoboJeeves, don’t give me that smart-alecky answer. I want a number.
I want the actual velocity.

RoboJeeves: Okay! “A number; the actual velocity.”

Me: RJ, these cheap jokes are beneath your dignity. Can you or can’t you
tell me the answer to my question?

RoboJeeves: Yes.

Me: “Yes,” what?

RoboJeeves: Yes, I either can or can’t tell you the answer to your question.

Me: Well, which is it? Can you?

RoboJeeves: Yes, I can.

Me: Then do it. Tell me the answer.

RoboJeeves: The velocity is 153,984,792 miles per hour.

Me: (After pausing to think . . .) RJ, I know you never make a mistake, but
that number, 153,984,792, is much too high.

98 Part II: Writing Your Own Java Programs

RoboJeeves: Too high? That’s impossible. Things fall very quickly on the
giant planet Mangorrrrkthongo. Now, if you wanted to know about objects
falling on Earth, you should have said so in the first place.

Sometimes that robot rubs me the wrong way. The truth is, RoboJeeves does
whatever I tell him to do — nothing more and nothing less. If I say “Feed the
cat,” then RJ says, “Feed it to whom? Which of your guests will be having cat
for dinner?”

Computers Are Stupid
Handy as they are, all computers do the same darn thing. They do exactly
what you tell them to do, and that’s sometimes very unfortunate. For exam-
ple, in 1962, a Mariner spacecraft to Venus was destroyed just four minutes
after its launch. Why? It was destroyed because of a missing keystroke in a
FORTRAN program. Around the same time, NASA scientists caught an error
that could have trashed the Mercury space flights. (Yup! These were flights
with people on board!) The error was a line with a period instead of a comma.
(A computer programmer wrote DO 10 I=1.10 instead of DO 10 I=1,10.)

With all due respect to my buddy RoboJeeves, he and his computer cousins
are all incredibly stupid. Sometimes they look as though they’re second-
guessing us humans, but actually they’re just doing what other humans told
them to do. They can toss virtual coins and use elaborate schemes to mimic
creative behavior, but they never really think on their own. If you say, “Jump,”
they do what they’re programmed to do in response to the letters J-u-m-p.

So when you write a computer program, you have to imagine that a genie has
granted you three wishes. Don’t ask for eternal love because, if you do, then
the genie will give you a slobbering, adoring mate — someone that you don’t
like at all. And don’t ask for a million dollars unless you want the genie to
turn you into a bank robber.

Everything you write in a computer program has to be very precise. Take a
look at an example. . . .

A Program to Echo Keyboard Input
Listing 5-1 contains a small Java program. The program lets you type one
line of characters on the keyboard. As soon as you press Enter, the program
 displays a second line that copies whatever you typed.

99 Chapter 5: Composing a Program

Listing 5-1: A Java Program

import java.util.Scanner;

class EchoLine {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);

 System.out.println(keyboard.nextLine());

 keyboard.close();
 }
}

 Most of the programs in this book are text-based programs. These programs
do their input and output almost exclusively in Eclipse’s Console view. You
can see GUI versions of the program in Listing 5-1, and of many other exam-
ples from this book, by visiting the book’s website (http://allmycode.
com/BeginProg).

Figure 5-1 shows a run of the EchoLine code (the code in Listing 5-1). The text
in the figure is a mixture of my own typing and the computer’s responses.

Figure 5-1:
What part

of the word
“don’t” do

you not
understand?

In Figure 5-1, I type the first line (the first Please don’t repeat this
to anyone line), and the computer displays the second line. Here’s what
happens when you run the code in Listing 5-1:

 1. At first, the computer does nothing.

 The computer is waiting for you to type something.

 2. You click inside Eclipse’s Console view.

 As a result, you see a cursor on the left edge of Eclipse’s Console view,
as shown in Figure 5-2.

http://allmycode.com/beginprog
http://allmycode.com/beginprog

100 Part II: Writing Your Own Java Programs

Figure 5-2:
The

 computer
waits for

you to type
something.

 3. You type one line of text — any text at all (see Figure 5-3).

Figure 5-3:
You type a
sentence.

 4. You press Enter, and the computer displays another copy of the line
that you typed, as shown in Figure 5-4.

Figure 5-4:
The

 computer
echoes your

input.

After displaying a copy of your input, the program’s run comes to an end.

Typing and running a program
This book’s website (http://allmycode.com/BeginProg) has a link
for downloading all the book’s Java programs. After you download the pro-
grams, you can follow instructions in Chapter 2 to add the programs to your
Eclipse workspace. Then, to test the code in Listing 5-1, you can run the
readymade 05-01 project.

http://allmycode.com/beginprog

101 Chapter 5: Composing a Program

But instead of running the readymade code, I encourage you to start from
scratch — to type Listing 5-1 yourself and then to test your newly created
code. Just follow these steps:

 1. Launch Eclipse.

 2. From Eclipse’s menu bar, choose File➪New➪Java Project.

 Eclipse’s New Java Project dialog box appears.

 3. In the dialog box’s Project Name field, type MyNewProject.

 4. Click Finish.

 Clicking Finish brings you back to the Eclipse workbench, with
MyNewProject in the Package Explorer. The next step is to create a new
Java source code file.

 5. In the Package Explorer, select MyNewProject and then, in Eclipse’s
main menu, choose File➪New➪Class.

 Eclipse’s New Java Class dialog box appears.

 6. In the New Java Class dialog box’s Name field, type the name of your
new class.

 In this example, use the name EchoLine. Spell EchoLine exactly the way
I spell it in Listing 5-1, with a capital E, a capital L, and no blank space.

 In Java, consistent spelling and capitalization are very important. If
you’re not consistent within a particular program, the program will
probably have some nasty, annoying compile-time errors.

 Optionally, you can put a check mark in the box labeled public static
void main(String[] args}. If you leave the box unchecked, you’ll
have a bit more typing to do when you get to Step 8. Either way (checked
or unchecked), it’s no big deal.

 7. Click Finish.

 Clicking Finish brings you back to the Eclipse workbench. An editor in
this workbench has a tab named EchoLine.java.

 8. Type the program of Listing 5-1 in the EchoLine.java editor.

 Copy the code exactly as you see it in Listing 5-1.

	 •	Spell	each	word	exactly	the	way	I	spell	it	in	Listing	5-1.

	 •	Capitalize	each	word	exactly	the	way	I	do	in	Listing	5-1.

	 •	Include	all	the	punctuation	symbols — the	dots,	the	semicolons,	
everything.

	 •	Double-check	the	spelling	of	the	word	println. Make sure that each
character in the word println is a lowercase letter. (In particular,
the l in ln is a letter, not a digit.)

102 Part II: Writing Your Own Java Programs

 The name println comes from the words “print a line.” If you were
allowed to write the name in uppercase letters, it would be PRINTLN,
with a letter L near the end of the word. (Unfortunately, Java is case-
sensitive. So you have to type println, which might look as though it
contains a digit 1. It doesn’t.)

 If you typed everything correctly, you don’t see any error markers in
the editor.

 If you see error markers, go back and compare everything you typed
with the stuff in Listing 5-1. Compare every letter, every word, every
squiggle, every smudge.

 If you’re reading an electronic version of this book, you might try copy-
ing directly from Listing 5-1 and pasting it into Eclipse’s editor. This
might be okay, but you might also find that the book’s electronic image
contains characters that don’t belong in a Java program. For example,
many books use curly quotation marks (“ and ”), which are different from
Java’s straight quotation mark ("). And remember, you can download
bona fide electronic copies of the examples in this book by visiting the
book’s website, http://allmycode.com/BeginProg.

 9. Make any changes or corrections to the code in the editor.

 When at last you see no error markers, you’re ready to run the program.

 10. Select the EchoLine class either by clicking inside the editor or by
clicking the MyNewProject branch in the Package Explorer.

 11. In Eclipse’s main menu, choose Run➪Run As➪Java Application.

 Your new Java program runs, but nothing much happens.

 12. Click inside Eclipse’s Console view.

 As a result, a cursor sits on the left edge of Eclipse’s Console view. (Refer
to Figure 5-2.) The computer is waiting for you to type something.

 If you forget to click inside the Console view, Eclipse may not send your
keystrokes to the running Java program. Instead, Eclipse may send your
keystrokes to the editor or (strangely enough) to the Package Explorer.

 13. Type a line of text and then press Enter.

 In response, the computer displays a second copy of your line of text.
Then the program’s run comes to an end. (Refer to Figure 5-4.)

If this list of steps seems a bit sketchy, you can find much more detail in
Chapter 3. (Look first at the section in Chapter 3 about compiling and run-
ning a program.) For the most part, the steps here in Chapter 5 are a quick
summary of the material in Chapter 3. The big difference is that in Chapter 3,
I don’t encourage you to type the program yourself.

http://allmycode.com/beginprog

103 Chapter 5: Composing a Program

So what’s the big deal when you type the program yourself? Well, lots of inter-
esting things can happen when you apply fingers to keyboard. That’s why the
second half of this chapter is devoted to troubleshooting.

How the EchoLine program works
When you were a tiny newborn, resting comfortably in your mother’s arms,
she told you how to send characters to the computer screen:

System.out.println(whatever text you want displayed);

What she didn’t tell you was how to fetch characters from the computer
keyboard. There are lots of ways to do it, but the one I recommend in this
chapter is

keyboard.nextLine()

Now, here’s the fun part. Calling the nextLine method doesn’t just scoop
characters from the keyboard. When the computer runs your program, the
computer substitutes whatever you type on the keyboard in place of the text
keyboard.nextLine().

To understand this, look at the statement in Listing 5-1:

System.out.println(keyboard.nextLine());

When you run the program, the computer sees your call to nextLine and
stops dead in its tracks. (Refer to Figure 5-2.) The computer waits for you to
type a line of text. So (refer to Figure 5-3) you type this line:

Hey, there's an echo in here.

The computer substitutes this entire Hey line for the keyboard.nextLine()
call in your program. The process is illustrated in Figure 5-5.

The call to keyboard.nextLine() is nestled inside the System.out.
println call. So when all is said and done, the computer behaves as though
the statement in Listing 5-1 looks like this:

System.out.println("Hey, there's an echo in here.");

The computer displays another copy of the text Hey, there's an echo
in here. on the screen. That’s why you see two copies of the Hey line in
Figure 5-4.

104 Part II: Writing Your Own Java Programs

Figure 5-5:
The

 computer
substitutes

text in
place of the
nextLine

call.

Getting numbers, words, and other things
In Listing 5-1, the words keyboard.nextLine() get an entire line of text
from the computer keyboard. So if you type

Testing 1 2 3

the program in Listing 5-1 echoes back your entire Testing 1 2 3 line
of text.

Sometimes you don’t want a program to get an entire line of text. Instead,
you want the program to get a piece of a line. For example, when you
type 1 2 3, you may want the computer to get the number 1. (Maybe the
number 1 stands for one customer or something like that.) In such situations,
you don’t put keyboard.nextLine() in your program. Instead, you use
keyboard.nextInt().

Table 5-1 shows you a few variations on the keyboard.next business.
Unfortunately, the table’s entries aren’t very predictable. To read a line
of input, you call nextLine. But to read a word of input, you don’t call
nextWord. (The Java API has no nextWord method.) Instead, to read a
word, you call next.

105 Chapter 5: Composing a Program

Table 5-1 Some Scanner Methods
To Read This Make This Method Call
A number with no decimal point in it nextInt()

A number with a decimal point in it nextDouble()

A word (ending in a blank space, for
example)

next()

A line (or what remains of a line after
you’ve already read some data from
the line)

nextLine()

A single character (such as a letter, a
digit, or a punctuation character)

findWithinHorizon(".",0).
charAt(0)

Also, the table’s story has a surprise ending. To read a single character, you
don’t call nextSomething. Instead, you can call the bizarre findWithin
Horizon(".",0).charAt(0) combination of methods. (You’ll have to
excuse the folks who created the Scanner class. They created Scanner from
a specialized point of view.)

To see some of the table’s methods in action, check other program listings in
this book. Chapters 6, 7, and 8 have some particularly nice examples.

Type three lines of code
and don’t look back
Buried innocently inside Listing 5-1 are three extra lines of code. These lines
help the computer read input from the keyboard. The three lines are

import java.util.Scanner;

 Scanner keyboard = new Scanner(System.in);

 keyboard.close();

Concerning these three lines, I have bad news and good news.

 ✓ The bad news is, the reasoning behind these lines is difficult to under-
stand. That’s especially true here in Chapter 5, where I introduce Java’s
most fundamental concepts.

 ✓ The good news is, you don’t have to understand the reasoning behind
these three lines. You can copy and paste these lines into any pro-
gram that gets input from the keyboard. You don’t have to change the
lines in any way. These lines work without any modifications in all
kinds of Java programs.

106 Part II: Writing Your Own Java Programs

A quick look at the Scanner
In this chapter, I advise you to ignore any
of the meanings behind the lines import
java.util.Scanner and Scanner
keyboard, etc. Just paste these two lines
mindlessly in your code and then move on.

Of course, you may not want to take my advice.
You may not like ignoring things in your code.
If you happen to be such a stubborn person,
I have a few quick facts for you.

 ✓ The word Scanner is defined in the
Java API .

 A Scanner is something you can use for
getting input.

 This Scanner class belongs to Java ver-
sions 5.0 and higher. If you use version
Java 1.4.2, you don’t have access to the
Scanner class. (You see an error marker
when you type Listing 5-1.)

 ✓ The words System and in are defined in
the Java API .

 Taken together, the words System.in
stand for the computer keyboard.

 In later chapters, you see things like new
Scanner(new File("myData.
txt")). In those chapters, I replace
System.in with the words new
File("myData.txt") because
I’m not getting input from the keyboard.
Instead, I’m getting input from a file on the
computer’s hard drive.

 ✓ The word keyboard doesn’t come from
the Java API .

 The word keyboard is a Barry Burd
creation. Instead of keyboard, you can

use readingThingie (or any other
name you want to use as long as you use
the name consistently). So, if you want to
be creative, you can write

Scanner readingThingie =
 new Scanner(System.in);

System.out.println
 (readingThingie.nextLine());

 The revised Listing 5-1 (with reading
Thingie instead of keyboard) com-
piles and runs without a hitch.

 ✓ The line import java.util.Scanner
is an example of an import declaration .

 An optional import declaration allows you
to abbreviate names in the rest of your pro-
gram. You can remove the import declara-
tion from Listing 5-1. But if you do, you must
use the Scanner class’s fully qualified
name throughout your code. Here’s how:

class EchoLine {

 public static void main
 (String args[]) {

 java.util.Scanner keyboard
 = new java.util.Scanner
 (System.in);

 System.out.println
 (keyboard.nextLine());

 keyboard.close();
 }
}

107 Chapter 5: Composing a Program

Just be sure to put these lines in the right places:

 ✓ Make the import java.util.Scanner line the first line in your
program.

 ✓ Put the Scanner keyboard = new Scanner(System.in) line
inside your main method immediately after the public static void
main(String args[]) { line.

 ✓ Make the keyboard close() line the last line in your program.

At some point in the future, you may have to be more careful about the posi-
tioning of these three lines. But for now, the rules I give will serve you well.

Expecting the Unexpected
Not long ago, I met an instructor with an interesting policy. He said, “Sometimes
when I’m lecturing, I compose a program from scratch on the computer. I do it
right in front of my students. If the program compiles and runs correctly on the
first try, I expect the students to give me a big round of applause.”

At first, you may think this guy has an enormous ego, but you have to put
things in perspective. It’s unusual for a program to compile and run correctly
the first time. There’s almost always a typo or another error of some kind.

So this section deals with the normal, expected errors that you see when you
compile and run a program for the first time. Everyone makes these mistakes,
even the most seasoned travelers. The key is keeping a cool head. Here’s my
general advice:

 ✓ Don’t expect a program that you type to compile the first time.

 Be prepared to return to your editor and fix some mistakes.

 ✓ Don’t expect a program that compiles flawlessly to run correctly.

 Even with no error markers in Eclipse’s editor, your program might still
contain flaws. After Eclipse compiles your program, you still have to run
the program successfully. That is, your program should finish its run and
display the correct output.

 You compile and then you run. Getting a program to compile without
errors is the easier of the two tasks.

 ✓ Read what’s in the Eclipse editor, not what you assume is in the
Eclipse editor.

 Don’t assume that you’ve typed words correctly, that you’ve capitalized
words correctly, or that you’ve matched curly braces or parentheses
correctly. Compare the code you typed with any sample code that you
have. Make sure that every detail is in order.

108 Part II: Writing Your Own Java Programs

 ✓ Be patient.

 Every good programming effort takes a long time to get right. If you
don’t understand something right away, be persistent. Stick with it (or
put it away for a while and come back to it). There’s nothing you can’t
understand if you put in enough time.

 ✓ Don’t become frustrated.

 Don’t throw your pie crust. Frustration (not lack of knowledge) is your
enemy. If you’re frustrated, you can’t accomplish anything.

 ✓ Don’t think you’re the only person who’s slow to understand.

 I’m slow, and I’m proud of it. (Melba, Chapter 6 will be a week late.)

 ✓ Don’t be timid.

 If your code isn’t working and you can’t figure out why it’s not working,
then ask someone. Post a message on an online forum. And don’t be
afraid of anyone’s snide or sarcastic answer. (For a list of gestures you
can make in response to peoples’ snotty answers, see Appendix Z.)

 To ask me directly, send me an e-mail message, tweet me, or post to me
on Facebook. (Send e-mail to BeginProg@allmycode.com, tweets to
@allmycode, or posts to Facebook at /allmycode.)

Diagnosing a problem
The “Typing and running a program” section, earlier in this chapter, tells
you how to run the EchoLine program. If all goes well, your screen ends up
looking like the one shown in Figure 5-1. But things don’t always go well.
Sometimes your finger slips, inserting a typo into your program. Sometimes
you ignore one of the details in Listing 5-1, and you get a nasty error message.

Of course, some things in Listing 5-1 are okay to change. Not every word in
Listing 5-1 is cast in stone. So here’s a nasty wrinkle — I can’t tell you that
you must always retype Listing 5-1 exactly as it appears. Some changes are
okay; others are not. Keep reading for some “f’rinstances.”

Case sensitivity
Java is case-sensitive. Among other things, case-sensitive means that, in a
Java program, the letter P isn’t the same as the letter p. If you send me some
fan mail and start with “Dear barry” instead of “Dear Barry,” I still know what
you mean. But Java doesn’t work that way.

109 Chapter 5: Composing a Program

So change just one character in a Java program and instead of an uneventful
compilation, you get a big headache! Change p to P like so:

//The following line is incorrect:
System.out.Println(keyboard.nextLine());

When you type the program in Eclipse’s editor, you get the ugliness shown
in Figure 5-6.

Figure 5-6:
The Java
compiler

understands
println,

but not
Println.

When you see error markers and quick fixes like the ones in Figure 5-6,
your best bet is to stay calm and read the messages carefully. Sometimes,
the messages contain useful hints. (Of course, sometimes they don’t.) The
message in Figure 5-6 is The method Println(String) is undefined
for the type PrintStream. In plain English, this means “The Java com-
piler can’t interpret the word Println.” (The message stops short of saying,
“Don’t type the word Println, you Dummy!” In any case, if the computer
says you’re one of us Dummies, you should take it as a compliment.) Now,
there are plenty of reasons why the compiler may not be able to understand
a word like Println. But, for a beginning programmer, you should check two
important things right away:

 ✓ Have you spelled the word correctly?

 Did you accidentally type printlin (with a digit 1) instead of println?

 ✓ Have you capitalized all letters correctly?

 Did you incorrectly type Println or PrintLn instead of println?

Either of these errors can send the Java compiler into a tailspin. So compare
your typing with the approved typing word for word (and letter for letter).
When you find a discrepancy, go back to the editor and fix the problem. Then
try compiling the program again.

110 Part II: Writing Your Own Java Programs

 As you type a program in Eclipse’s editor, Eclipse tries to compile the program.
When Eclipse finds a compile-time error, the editor usually displays at least
three red error markers (see Figure 5-6). The marker in the editor’s left margin
has an X-like marking and sometimes a tiny light bulb. The marker in the right
margin is a small rectangle. The marker in the middle is a jagged red underline.

If you hover your mouse over any of these markers, Eclipse displays a mes-
sage that attempts to describe the nature of the error. If you hover over
the jagged line, Eclipse displays a message and possibly a list of suggested
solutions. (Each suggested solution is called a quick fix.) If you right-click the
left margin’s marker (or control-click on a Mac) and choose Quick Fix in the
resulting context menu, Eclipse displays the suggested solutions. To have
Eclipse modify your code automatically (using a suggestion from the quick-fix
list), either single-click or double-click the item in the quick-fix list. (That is,
single-click anything that looks like a link; double-click anything that doesn’t
look like a link.)

Omitting punctuation
In English and in Java, using the; proper! punctuation is important)

Take, for example, the semicolons in Listing 5-1. What happens if you forget
to type a semicolon?

//The following code is incorrect:

 System.out.println(keyboard.nextLine())
}

If you leave off the semicolon, you get the message shown in Figure 5-7.

Figure 5-7:
A helpful

error
message.

A message like the one in Figure 5-8 makes your life much simpler. I don’t
have to explain the message, and you don’t have to puzzle over the message’s
meaning. Just take the message insert ";" to complete Statement
on its face value. Insert the semicolon between the end of the System.out.
println(keyboard.nextLine()) statement and whatever code comes
after the statement. (For code that’s easier to read and understand, tack on the
semicolon at the end of the System.out.println(keyboard.nextLine())
statement.)

111 Chapter 5: Composing a Program

Figure 5-8:
An

unwanted
semicolon

messes
things up.

Using too much punctuation
In junior high school, my English teacher said I should use a comma when-
ever I would normally pause for a breath. This advice doesn’t work well
during allergy season, when my sentences have more commas in them than
words. Even as a paid author, I have trouble deciding where the commas
should go, so I often add extra commas for good measure. This makes more
work for my copy editor, Melba, who has a trash can full of commas by the
desk in her office.

It’s the same way in a Java program. You can get carried away with punctuation.
Consider, for example, the main method header in Listing 5-1. This line is a
dangerous curve for novice programmers.

For information on the terms method header and method body, refer to
Chapter 4.

Why can’t the computer fix it?
How often do you get to finish someone else’s
sentence? “Please,” says your supervisor, “go
over there and connect the . . . ”

“Wires,” you say. “I’ll connect the wires.” If you
know what someone means to say, why wait for
them to say it?

This same question comes up in connection with
computer error messages. Take a look at the
message in Figure 5-7. The computer expects
a semicolon after the statement on line 8. Well,
Mr. Computer, if you know where you want a
semicolon, then just add the semicolon and be
done with it. Why are you bothering me about it?

The answer is simple. The computer isn’t inter-
ested in taking any chances. What if you don’t
really want a semicolon after the statement on
line 8? What if the missing semicolon repre-
sents a more profound problem? If the computer
added the extra semicolon, it could potentially
do more harm than good.

Returning to you and your supervisor . . .

Boom! A big explosion. “Not the wires, you
Dummy. The dots. I wanted you to connect the
dots.”

“Sorry,” you say.

112 Part II: Writing Your Own Java Programs

Normally, you shouldn’t be ending a method header with a semicolon. But
people add semicolons anyway. (Maybe, in some subtle way, a method
header looks like it should end with a semicolon.)

//The following line is incorrect:
public static void main(String args[]); {

If you add this extraneous semicolon to the code in Listing 5-1, you get the
message shown in Figure 5-8.

The error message and quick fixes in Figure 5-8 are a bit misleading. The
message starts with This method requires a body. But the method
has a body. Doesn’t it?

When the computer tries to compile public static void main(String
args[]); (ending with a semicolon), the computer gets confused. I illustrate
the confusion in Figure 5-9. Your eye sees an extra semicolon, but the com-
puter’s eye interprets this as a method without a body. So that’s the error
message — the computer says This method requires a body instead
of a semicolon.

Figure 5-9:
What’s
on this

 computer’s
mind?

113 Chapter 5: Composing a Program

If you select the Add Body quick fix, Eclipse creates the following (really
horrible) code:

import java.util.Scanner;

class EchoLine {

 public static void main(String args[]) {
 } {
 Scanner keyboard = new Scanner(System.in);

 System.out.println(keyboard.nextLine());

 keyboard.close();
 }
}

This “fixed” code has no compile-time errors. But when you run this code,
nothing happens. The program starts running and then stops running with
nothing in Eclipse’s Console view.

We all know that a computer is a very patient, very sympathetic machine.
That’s why the computer looks at your code and decides to give you one
more chance. The computer remembers that Java has an advanced feature in
which you write a method header without writing a method body. When you
do this, you get what’s called an abstract method — something that I don’t
use at all in this book. Anyway, in Figure 5-9, the computer sees a header
with no body. So the computer says to itself, “I know! Maybe the programmer
is trying to write an abstract method. The trouble is, an abstract method’s
header has to have the word abstract in it. I should remind the program-
mer about that.” So the computer offers the add 'abstract' modifier
quick fix in Figure 5-9.

One way or another, you can’t interpret the error message and the quick fixes
in Figure 5-9 without reading between the lines. So here are some tips to help
you decipher murky messages:

 ✓ Avoid the knee-jerk response.

 Some people see the add 'abstract' modifier quick fix in Figure 5-9
and wonder where they can add a modifier. Unfortunately, this isn’t the
right approach. If you don’t know what an 'abstract' modifier is,
then chances are you didn’t mean to use an abstract modifier in the
first place.

 ✓ Stare at the bad line of code for a long, long time.

 If you look carefully at the public static . . . line in Figure 5-9,
eventually you’ll notice that it’s different from the corresponding line
in Listing 5-1. The line in Listing 5-1 has no semicolon, but the line in
Figure 5-9 has one.

114 Part II: Writing Your Own Java Programs

 Of course, you won’t always be starting with some prewritten code like
the stuff in Listing 5-1. That’s where practice makes perfect. The more
code you write, the more sensitive your eyes will become to things like
extraneous semicolons and other programming goofs.

Too many curly braces
You’re looking for the nearest gas station, so you ask one of the locals. “Go to
the first traffic light and make a left,” says the local. You go straight for a few
streets and see a blinking yellow signal. You turn left at the signal and travel
for a mile or so. What? No gas station? Maybe you mistook the blinking signal
for a real traffic light.

You come to a fork in the road and say to yourself, “The directions said noth-
ing about a fork. Which way should I go?” You veer right, but a minute later,
you’re forced onto a highway. You see a sign that says, Next Exit 24 Miles.
Now you’re really lost, and the gas gauge points to “S.” (The “S” stands for
“Stranded.”)

So here’s what happened: You made an honest mistake. You shouldn’t have
turned left at the yellow blinking light. That mistake alone wasn’t so terrible.
But that first mistake lead to more confusion, and eventually, your choices
made no sense at all. If you hadn’t turned at the blinking light, you’d never
have encountered that stinking fork in the road. Then getting on the highway
was sheer catastrophe.

Is there a point to this story? Of course there is. A computer can get itself
into the same sort of mess. The computer notices an error in your program.
Then, metaphorically speaking, the computer takes a fork in the road — a
fork based on the original error — a fork for which none of the alternatives
leads to good results.

Here’s an example. You’re retyping the code in Listing 5-1, and you mistakenly
type an extra curly brace:

//The following code is incorrect:
import java.util.Scanner;

class EchoLine {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 }
 System.out.println(keyboard.nextLine());

 keyboard.close();
 }
}

115 Chapter 5: Composing a Program

In Eclipse’s editor, you hover over the leftmost marker. You see the messages
shown in Figure 5-10.

Figure 5-10:
Three error
messages.

Eclipse is confused because the call to System.out.println is completely
out of place. Eclipse displays three messages — something about println,
something about the parenthesis, and something very cryptic concerning
misplaced constructs. None of these messages addresses the cause of the
problem. Eclipse is trying to make the best of a bad situation, but at this
point, you shouldn’t believe a word that Eclipse says.

Computers aren’t smart animals, and if someone programs Eclipse to say
misplaced construct(s), that’s exactly what Eclipse says. (Some people
say that computers make them feel stupid. For me, it’s the opposite. A com-
puter reminds me how dumb a machine can be and how smart a person can
be. I like that.)

So when you see a bunch of error messages, read each error message care-
fully. Ask yourself what you can learn from each message. But don’t take each
message as the authoritative truth. When you’ve exhausted your efforts with
Eclipse’s messages, return to your efforts to stare carefully at the code.

 If you get more than one error message, always look carefully at each message
in the bunch. Sometimes a very helpful message hides among a bunch of
not-so-helpful messages.

Misspelling words (and other missteps)
You’ve found an old family recipe for deviled eggs (one of my favorites). You
follow every step as carefully as you can, but you leave out the salt because of
your grandmother’s high blood pressure. You hand your grandmother an egg
(a finished masterpiece). “Not enough pepper,” she says, and she walks away.

The next course is beef bourguignon. You take an unsalted slice to dear old
Granny. “Not sweet enough,” she groans, and she leaves the room. “But that’s
impossible,” you think. “There’s no sugar in beef bourguignon. I left out the
salt.” Even so, you go back to the kitchen and prepare mashed potatoes. You
use unsalted butter, of course. “She’ll love it this time,” you think.

116 Part II: Writing Your Own Java Programs

“Sour potatoes! Yuck!” Granny says, as she goes to the sink to spit it all out.
Because you have a strong ego, you’re not insulted by your grandmother’s
behavior. But you’re somewhat confused. Why is she saying such different
things about three unsalted recipes? Maybe there are some subtle differences
that you don’t know about.

Well, the same kind of thing happens when you’re writing computer programs.
You can make the same kind of mistake twice (or at least, make what you think
is the same kind of mistake twice) and get different error messages each time.

For example, if you change the spelling or capitalization of println in
Listing 5-1, Eclipse tells you the method is undefined for the type
PrintStream. But if you change System to system, Eclipse says that
system cannot be resolved. And with System misspelled, Eclipse
doesn’t notice whether println is spelled correctly or not.

In Listing 5-1, if you change the spelling of args, nothing goes wrong. The
program compiles and runs correctly. But if you change the spelling of
main, you face some unusual difficulties. (If you don’t believe me, read the
“Runtime error messages” section, later in this chapter.)

Still in Listing 5-1, change the number equal signs in the Scanner keyboard =
new Scanner(System.in) line. With one equal sign, everybody’s happy.
If you accidentally type two equal signs (Scanner keyboard == new
Scanner(System.in)), Eclipse steers you back on course, telling you
Syntax error on token "==", = expected (see Figure 5-11). But if you
go crazy and type four equal signs or if you type no equal signs at all, Eclipse
misinterprets everything and suggests that you insert ";" to complete
BlockStatements. Unfortunately, inserting a semicolon is no help at all (see
Figure 5-12).

Figure 5-11:
Remove the

second of
two equal

signs.

So remember: Java responds to errors in many different ways. Two changes
in your code might look alike, but similar changes don’t always lead to similar
results. Each problem in your code requires its own individualized attention.

117 Chapter 5: Composing a Program

Figure 5-12:
You’re

 missing an
equal sign,
but Eclipse

fails to
notice.

 Here’s a useful exercise: Start with a working Java program. After successfully
running the code, make a change that intentionally introduces errors. Look
carefully at each error message and ask yourself whether the message would
help you diagnose the problem. This exercise is great because it helps you think
of errors as normal occurrences and gives you practice analyzing messages
when you’re not under pressure to get your program to run correctly.

Runtime error messages
Up to this point in the chapter, I describe errors that crop up when you com-
pile a program. Another category of errors hides until you run the program.
A case in point is the improper spelling or capitalization of the word main.

Assume that, in a moment of wild abandon, you incorrectly spell main with a
capital M:

//The following line is incorrect:
public static void Main(String args[]) {

When you type the code, everything is hunky-dory. You don’t see any error
markers.

But then you try to run your program. At this point, the bits hit the fan. The
catastrophe is illustrated in Figure 5-13.

Figure 5-13:
Whadaya

mean “Main
method

not found
in class

EchoLine?”

118 Part II: Writing Your Own Java Programs

Sure, your program has something named Main, but does it have anything
named main? (Yes, I’ve heard of a famous poet named e. e. cummings, but
who the heck is E. E. Cummings?) The computer doesn’t presume that your
word Main means the same thing as the expected word main. You need to
change Main back to main. Then everything will be okay.

But in the meantime (or in the maintime), how does this improper capitaliza-
tion make it past the compiler? Why don’t you get error messages when you
compile the program? And if a capital M doesn’t upset the compiler, why does
this capital M mess everything up at runtime?

The answer goes back to the different kinds of words in the Java program-
ming language. As I say in Chapter 4, Java has identifiers and keywords.

The keywords in Java are cast in stone. If you change class to Class or
public to Public, you get something new — something that the computer
probably can’t understand. That’s why the compiler chokes on improper
keyword capitalizations. It’s the compiler’s job to make sure that all the
keywords are used properly.

On the other hand, the identifiers can bounce all over the place. Sure, there’s
an identifier named main, but you can make up a new identifier named Main.
(You shouldn’t do it, though. It’s too confusing to people who know Java’s
usual meaning for the word main.) When the compiler sees a mistyped line,
like public static void Main, the compiler just assumes that you’re
making up a brand-new name. So the compiler lets the line pass. You get no
complaints from your old friend, the compiler.

But then, when you try to run the code, the computer goes ballistic. The Java
Virtual Machine (JVM) runs your code. (For details, see Chapter 1.) The JVM
needs to find a place to start executing statements in your code, so the JVM
looks for a starting point named main, with a small m. If the JVM doesn’t see
anything named main, the JVM gets upset. “Main method not found in class
EchoLine,” says the JVM. So at runtime, the JVM, and not the compiler, gives
you an error message.

 A better error message would be main method not found in class EchoLine,
with a lowercase letter m in main. Here and there, the people who create the
error messages overlook a detail or two.

What problem? I don’t see a problem
I end this chapter on an upbeat note by showing you some of the things you
can change in Listing 5-1 without rocking the boat.

119 Chapter 5: Composing a Program

The identifiers that you create
If you create an identifier, then that name is up for grabs. For example, in
Listing 5-1, you can change EchoLine to RepeatAfterMe.

class RepeatAfterMe {

 public static void main ... etc.

This presents no problem at all, as long as you’re willing to be consistent.
Just follow most of the steps in this chapter’s earlier “Typing and running a
program” section.

 ✓ In Step 6, instead of typing EchoLine, type RepeatAfterMe in the New
Java Class dialog box’s Name field.

 ✓ In Step 8, when you copy the code from Listing 5-1, don’t type

class EchoLine {

 near the top of the listing. Instead, type the words

class RepeatAfterMe {

Spaces and indentation
Java isn’t fussy about the use of spaces and indentation. All you need to do
is keep your program well-organized and readable. Here’s an alternative to
spacing and indentation of the code in Listing 5-1:

import java.util.Scanner;
class EchoLine
{
 public static void main(String args[])
 {
 Scanner keyboard =
 new Scanner(System.in);
 System.out.println
 (keyboard.nextLine());
 keyboard.close();
 }
}

How you choose to do things
A program is like a fingerprint. No two programs look very much alike. Say that
I discuss a programming problem with a colleague. Then we go our separate
ways and write our own programs to solve the same problem. Sure, we’re
duplicating the effort. But will we create the exact same code? Absolutely not.
Everyone has his or her own style, and everyone’s style is unique.

120 Part II: Writing Your Own Java Programs

I asked fellow Java programmer David Herst to write his own EchoLine program
without showing him my code from Listing 5-1. Here’s what he wrote:

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;

public class EchoLine {
 public static void main(String[] args)
 throws IOException {
 InputStreamReader isr =
 new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String input = br.readLine();
 System.out.println(input);
 }
}

Don’t worry about BufferedReader, InputStreamReader, or things like
that. Just notice that, like snowflakes, no two programs are written exactly
alike, even if they accomplish the same task. That’s nice. It means your
code, however different, can be as good as the next person’s. That’s very
encouraging.

Chapter 6

Using the Building Blocks:
Variables, Values, and Types

In This Chapter
▶ Declaring variables

▶ Assigning values to variables

▶ Working with numbers

▶ Using Java types

B
ack in 1946, John von Neumann wrote a groundbreaking paper about
the newly emerging technology of computers and computing. Among

other things, he established one fundamental fact: For all their complexity,
the main business of computers is to move data from one place to another.
Take a number — the balance in a person’s bank account. Move this number
from the computer’s memory to the computer’s processing unit. Add a few
dollars to the balance and then move it back to the computer’s memory. The
movement of data . . . that’s all there is; there ain’t no more.

Good enough! This chapter shows you how to move around your data.

Using Variables
Here’s an excerpt from a software company’s website:

SnitSoft recognizes its obligation to the information technology com-
munity. For that reason, SnitSoft is making its most popular applications
available for a nominal charge. For just $5.95 plus shipping and handling,
you receive a CD-ROM containing SnitSoft’s premier products.

122 Part II: Writing Your Own Java Programs

Go ahead. Click the Order Now! link. Just see what happens. You get an order
form with two items on it. One item is labeled $5.95 (CD-ROM), and the other
item reads $25.00 (shipping and handling). What a rip-off! Thanks to
SnitSoft’s generosity, you can pay $30.95 for ten cents’ worth of software.

Behind the scenes of the SnitSoft web page, a computer program does
some scoundrel’s arithmetic. The program looks something like the code in
Listing 6-1.

Listing 6-1: SnitSoft’s Grand Scam

class SnitSoft {

 public static void main(String args[]) {
 double amount;

 amount = 5.95;
 amount = amount + 25.00;

 System.out.print("We will bill $");
 System.out.print(amount);
 System.out.println(" to your credit card.");
 }
}

When I run Listing 6-1 code on my own computer (not the SnitSoft computer),
I get the output shown in Figure 6-1.

Figure 6-1:
Running the

code from
Listing 6-1.

Using a variable
The code in Listing 6-1 makes use of a variable named amount. A variable is a
placeholder. You can stick a number like 5.95 into a variable. After you’ve placed
a number in the variable, you can change your mind and put a different number,
like 30.95, into the variable. (That’s what varies in a variable.) Of course, when
you put a new number in a variable, the old number is no longer there. If you
didn’t save the old number somewhere else, the old number is gone.

123 Chapter 6: Using the Building Blocks: Variables, Values, and Types

Figure 6-2 gives a before-and-after picture of the code in Listing 6-1. When the
computer executes amount = 5.95, the variable amount has the number
5.95 in it. Then, after the amount = amount + 25.00 statement is executed,
the variable amount suddenly has 30.95 in it. When you think about a variable,
picture a place in the computer’s memory where wires and transistors store
5.95, 30.95, or whatever. In Figure 6-2, imagine that each box is surrounded by
 millions of other such boxes.

Figure 6-2:
A variable

(before and
after).

Now you need some terminology. (You can follow along in Figure 6-3.) The
thing stored in a variable is called a value. A variable’s value can change during
the run of a program (when SnitSoft adds the shipping and handling cost, for
example). The value stored in a variable isn’t necessarily a number. (You can,
for example, create a variable that always stores a letter.) The kind of value
stored in a variable is a variable’s type. (You can read more about types in the
rest of this chapter and in the next two chapters as well.)

Figure 6-3: A
variable, its

value, and
its type.

124 Part II: Writing Your Own Java Programs

 There’s a subtle, almost unnoticeable difference between a variable and a
variable’s name. Even in formal writing, I often use the word variable when I
mean variable name. Strictly speaking, amount is the variable name, and all
the memory storage associated with amount (including the value and type
of amount) is the variable itself. If you think this distinction between variable
and variable name is too subtle for you to worry about, join the club.

Every variable name is an identifier — a name that you can make up in your
own code (for more about this, see Chapter 4). In preparing Listing 6-1, I made
up the name amount.

Understanding assignment statements
The statements with equal signs in Listing 6-1 are called assignment statements.
In an assignment statement, you assign a value to something. In many cases,
this something is a variable.

You should get into the habit of reading assignment statements from right to
left. For example, the first assignment statement in Listing 6-1 says, “Assign
5.95 to the amount variable.” The second assignment statement is just a bit
more complicated. Reading the second assignment statement from right to
left, you get “Add 25.00 to the value that’s already in the amount variable
and make that number (30.95) be the new value of the amount variable.”
For a graphic, hit-you-over-the-head illustration of this, see Figure 6-4.

Figure 6-4:
Reading an
assignment

statement
from right to

left.

 In an assignment statement, the thing being assigned a value is always on the
left side of the equal sign.

125 Chapter 6: Using the Building Blocks: Variables, Values, and Types

To wrap or not to wrap?
The last three statements in Listing 6-1 use a neat trick. You want the program
to display just one line on the screen, but this line contains three different
things:

 ✓ The line starts with We will bill $.

 ✓ The line continues with the amount variable’s value.

 ✓ The line ends with to your credit card.

These are three separate things, so you put these things in three separate
statements. The first two statements are calls to System.out.print. The
last statement is a call to System.out.println.

Calls to System.out.print display text on part of a line and then leave
the cursor at the end of the current line. After executing System.out.
print, the cursor is still at the end of the same line, so the next System.
out.whatever can continue printing on that same line. With several calls
to print capped off by a single call to println, the result is just one nice-
looking line of output, as Figure 6-5 illustrates.

Figure 6-5:
The roles
played by
System.

out.
print and
System.

out.
println.

 A call to System.out.print writes some things and leaves the cursor sitting
at the end of the line of output. A call to System.out.println writes things
and then finishes the job by moving the cursor to the start of a brand-new line
of output.

126 Part II: Writing Your Own Java Programs

What Do All Those Zeros and Ones Mean?
Here’s a word:

gift

The question for discussion is, what does that word mean? Well, it depends
on who looks at the word. For example, an English-speaking reader would say
that “gift” stands for something one person bestows upon another in a box
covered in bright paper and ribbons.

Look! I’m giving you a gift!

But in German, the word “gift” means “poison.”

Let me give you some gift, my dear.

And in Swedish, “gift” can mean either “married” or “poison.”

As soon as they got gift, she slipped a gift into his drink.

Then there’s French. In France, there’s a candy bar named “Gift.”

He came for the holidays, and all he gave me was a bar of Gift.

So what do the letters g-i-f-t really mean? Well, they don’t mean anything until
you decide on a way to interpret them. The same is true of the zeros and ones
inside a computer’s circuitry.

Take, for example, the sequence 01001010. This sequence can stand for the
letter J, but it can also stand for the number 74. That same sequence of zeros
and ones can stand for 1.0369608636003646×10–43. And when interpreted as
screen pixels, the same sequence can represent the dots shown in Figure 6-6.
The meaning of 01001010 depends entirely on the way the software interprets
this sequence.

Figure 6-6:
An extreme
close-up of
eight black-

and-white
screen
pixels.

127 Chapter 6: Using the Building Blocks: Variables, Values, and Types

Types and declarations
How do you tell the computer what 01001010 stands for? The answer is in the
concept called type. The type of a variable describes the kinds of values that
the variable is permitted to store.

In Listing 6-1, look at the first line in the body of the main method:

double amount;

This line is called a variable declaration. Putting this line in your program
is like saying, “I’m declaring my intention to have a variable named amount
in my program.” This line reserves the name amount for your use in the
program.

In this variable declaration, the word double is a Java keyword. This word
double tells the computer what kinds of values you intend to store in amount.
In particular, the word double stands for numbers between –1.8×10308 and
1.8×10308. That’s an enormous range of numbers. Without the fancy ×10 nota-
tion, the second of these numbers is

1800
00
00
00
00
000000000000000000000000000000000000000.0

If the folks at SnitSoft ever charge that much for shipping and handling, they
can represent the charge with a variable of type double.

What’s the point?
More important than the humongous range of the double keyword’s num-
bers is the fact that a double value can have digits to the right of the decimal
point. After you declare amount to be of type double, you can store all sorts
of numbers in amount. You can store 5.95, 0.02398479, or –3.0. In Listing 6-1, if
I hadn’t declared amount to be of type double, I wouldn’t have been able to
store 5.95. Instead, I would have had to store plain old 5 or dreary old 6, with-
out any digits beyond the decimal point.

For more info on numbers without decimal points, see Chapter 7.

128 Part II: Writing Your Own Java Programs

 This paragraph deals with a really picky point, so skip it if you’re not in the
mood. People often use the phrase “decimal number” to describe a number
with digits to the right of the decimal point. The problem is, the syllable “dec”
stands for the number 10, so the word “decimal” implies a base-10 representa-
tion. Because computers store base-2 (not base-10) representations, the word
“decimal” to describe such a number is a misnomer. But in this book, I just
can’t help myself. I’m calling them “decimal numbers,” whether the techies
like it or not.

Reading Decimal Numbers
from the Keyboard

I don’t believe it! SnitSoft is having a sale! For one week only, you can get the
SnitSoft CD-ROM for the low price of just $5.75! Better hurry up and order one.

No, wait! Listing 6-1 has the price fixed at $5.95. I have to revise the program.

I know. I’ll make the code more versatile. I’ll input the amount from the key-
board. Listing 6-2 has the revised code, and Figure 6-7 shows a run of the new
code.

Listing 6-2: Getting a Double Value from the Keyboard

import java.util.Scanner;

class VersatileSnitSoft {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 double amount;

 System.out.print("What's the price of a CD-ROM? ");

 amount = keyboard.nextDouble();
 amount = amount + 25.00;

 System.out.print("We will bill $");
 System.out.print(amount);
 System.out.println(" to your credit card.");

 keyboard.close();
 }
}

129 Chapter 6: Using the Building Blocks: Variables, Values, and Types

Figure 6-7:
Getting the

value of
a double
variable.

 Grouping separators vary from one country to another. The run shown in
Figure 6-7 is for a computer configured in the United States where 5.75 means
“five and seventy-five hundredths.” But the run might look different on a com-
puter that’s configured in what I call a “comma country” — a country where
5,75 means “five and seventy-five hundredths.” If you live in a comma country,
and you type 5.75 exactly as it’s shown in Figure 6-7, you probably get an
error message (an InputMismatchException). If so, change the number
amounts in your file to match your country’s number format. When you do,
you should be okay.

Though these be methods, yet
there is madness in ’t
Notice the call to the nextDouble method in Listing 6-2. Back in Listing 5-1,
I use nextLine, but here in Listing 6-2, I use nextDouble.

In Java, each type of input requires its own special method. If you’re getting
a line of text, then nextLine works just fine. But if you’re reading stuff from
the keyboard and you want that stuff to be interpreted as a number, you need
a method like nextDouble.

To go from Listing 6-1 to Listing 6-2, I added an import declaration and some
stuff about new Scanner(System.in). You can find out more about these
things by reading the section on input and output in Chapter 5. (You can find
out even more about input and output by visiting Chapter 13.) And more exam-
ples (more keyboard.nextSomething methods) are in Chapters 7 and 8.

Methods and assignments
Note how I use keyboard.nextDouble in Listing 6-2. The call to method
keyboard.nextDouble is part of an assignment statement. If you look in
Chapter 5 at the section on how the EchoLine program works, you see that

130 Part II: Writing Your Own Java Programs

the computer can substitute something in place of a method call. The com-
puter does this in Listing 6-2. When you type 5.75 on the keyboard, the com-
puter turns

amount = keyboard.nextDouble();

into

amount = 5.75;

(The computer doesn’t really rewrite the code in Listing 6-2. This amount =
5.75 line just illustrates the effect of the computer’s action.) In the second
assignment statement in Listing 6-2, the computer adds 25.00 to the 5.75 that’s
stored in amount.

Some method calls have this substitution effect, and others (like System.
out.println) don’t. To find out more about this topic, see Chapter 19.

Who does what, and how?
When you write a program, you’re called a pro-
grammer, but when you run a program, you’re
called a user. So when you test your own code,
you’re being both the programmer and the user.

Suppose that your program contains a
keyboard.nextSomething() call, like
the calls in Listings 5-1 and 6-2. Then your pro-
gram gets input from the user. But, when the
program runs, how does the user know to type
something on the keyboard? If the user and
the programmer are the same person, and the
program is fairly simple, then knowing what
to type is no big deal. For example, when you
start running the code in Listing 5-1, you have
this book in front of you, and the book says
“The computer is waiting for you to type some-
thing . . . You type one line of text . . . ” So you
type the text and press Enter. Everything is fine.

But very few programs come with their own
books. In many instances, when a program

starts running, the user has to stare at the
screen to figure out what to do next. The code
in Listing 6-2 works in this stare-at-the-screen
scenario. In Listing 6-2, the first call to print
puts an informative message (What's the
price of a CD-ROM?) on the user’s screen.
A message of this kind is called a prompt.

When you start writing programs, you can easily
confuse the roles of the prompt and the user’s
input. So remember, no preordained relation-
ship exists between a prompt and the subse-
quent input. To create a prompt, you call print
or println. Then, to read the user’s input,
you call nextLine, nextDouble, or one of
the Scanner class’s other nextSomething
methods. These print and next calls belong
in two separate statements. Java has no com-
monly used, single statement that does both the
prompting and the “next-ing.”

131 Chapter 6: Using the Building Blocks: Variables, Values, and Types

Variations on a Theme
In Listing 6-1, it takes two lines to give the amount variable its first value:

double amount;
amount = 5.95;

You can do the same thing with just one line:

double amount = 5.95;

When you do this, you don’t say that that you’re “assigning” a value to the
amount variable. The line double amount=5.95 isn’t called an “assignment
statement.” Instead, this line is called a declaration with an initialization.
You’re initializing the amount variable. You can do all sorts of things with ini-
tializations, even arithmetic.

double gasBill = 174.59;
double elecBill = 84.21;
double H2OBill = 22.88;
double total = gasBill + elecBill + H2OBill;

Moving variables from place to place
It helps to remember the difference between initializations and assignments.
For one thing, you can drag a declaration with its initialization outside of a
method.

As the programmer, your job is to combine the
prompting and the next-ing. You can combine
prompting and next-ing in all kinds of ways.
Some ways are helpful to the user, and some
ways aren’t.

 ✓ If you don’t have a call to print or
println, then the user sees no prompt .
A blinking cursor sits quietly and waits
for the user to type something. The user
has to guess what kind of input to type.
Occasionally that’s okay, but usually it isn’t.

 ✓ If you call print or println, but
you don’t call a keyboard.next
Something method, then the computer

doesn’t wait for the user to type anything .
The program races to execute whatever
statement comes immediately after the
print or println.

 ✓ If your prompt displays a misleading mes-
sage, then you mislead the user . Java has
no built-in feature that checks the appropri-
ateness of a prompt. That’s not surprising.
Most computer languages have no prompt-
checking feature.

So be careful with your prompts. Be nice to
your user. Remember, you were once a humble
computer user, too.

132 Part II: Writing Your Own Java Programs

//This is okay:
class SnitSoft {
 static double amount = 5.95;

 public static void main(String args[]) {
 amount = amount + 25.00;

 System.out.print("We will bill $");
 System.out.print(amount);
 System.out.println(" to your credit card.");
 }
}

You can’t do the same thing with assignment statements. (See the following
code and Figure 6-8.)

//This does not compile:
class BadSnitSoftCode {
 static double amount;

 amount = 5.95; //Misplaced statement

 public static void main(String args[]) {
 amount = amount + 25.00;

 System.out.print("We will bill $");
 System.out.print(amount);
 System.out.println(" to your credit card.");
 }
}

Figure 6-8:
A failed

attempt to
compile

BadSnit-
Soft Code.

133 Chapter 6: Using the Building Blocks: Variables, Values, and Types

You can’t drag statements outside of methods. (Even though a variable decla-
ration ends with a semicolon, a variable declaration isn’t considered to be a
statement. Go figure!)

The advantage of putting a declaration outside of a method is illustrated in
Chapter 19. While you wait impatiently to reach that chapter, notice how I
added the word static to each declaration that I pulled out of the main
method. I had to do this because the main method’s header has the word
static in it. Not all methods are static. In fact, most methods aren’t
static. But whenever you pull a declaration out of a static method, you
have to add the word static at the beginning of the declaration. All the
mystery surrounding the word static is resolved in Chapter 18.

Combining variable declarations
The code in Listing 6-1 has only one variable (as if variables are in short
supply). You can get the same effect with several variables.

class SnitSoftNew {

 public static void main(String args[]) {
 double cdPrice;
 double shippingAndHandling;
 double total;

 cdPrice = 5.95;
 shippingAndHandling = 25.00;
 total = cdPrice + shippingAndHandling;

 System.out.print("We will bill $");
 System.out.print(total);
 System.out.println(" to your credit card.");
 }
}

This new code gives you the same output as the code in Listing 6-1. (Refer to
Figure 6-1.)

The new code has three declarations — one for each of the program’s three
variables. Because all three variables have the same type (the type double),
I can modify the code and declare all three variables in one fell swoop:

double cdPrice, shippingAndHandling, total;

134 Part II: Writing Your Own Java Programs

So which is better, one declaration or three declarations? Neither is better.
It’s a matter of personal style.

You can even add initializations to a combined declaration. When you do,
each initialization applies to only one variable. For example, with the line

double cdPrice, shippingAndHandling = 25.00, total;

the value of shippingAndHandling becomes 25.00, but the variables
cdPrice and total get no particular value.

Chapter 7

Numbers and Types
In This Chapter
▶ Processing whole numbers

▶ Making new values from old values

▶ Understanding Java’s more exotic types

N
ot so long ago, people thought computers did nothing but big, number-
crunching calculations. Computers solved arithmetic problems, and

that was the end of the story.

In the 1980s, with the widespread use of word-processing programs, the myth
of the big metal math brain went by the wayside. But even then, computers
made great calculators. After all, computers are very fast and very accurate.
Computers never need to count on their fingers. Best of all, computers don’t
feel burdened when they do arithmetic. I hate ending a meal in a good restau-
rant by worrying about the tax and tip, but computers don’t mind that stuff
at all. (Even so, computers seldom go out to eat.)

Using Whole Numbers
Let me tell you, it’s no fun being an adult. Right now I have four little kids in
my living room. They’re all staring at me because I have a bag full of gumballs
in my hand. With 30 gumballs in the bag, the kids are all thinking “Who’s
the best? Who gets more gumballs than the others? And who’s going to be
treated unfairly?” They insist on a complete, official gumball count, with each
kid getting exactly the same number of tasty little treats. I must be careful. If
I’m not, then I’ll never hear the end of it.

With 30 gumballs and 4 kids, there’s no way to divide the gumballs evenly. Of
course, if I get rid of a kid, then I can give 10 gumballs to each kid. The trouble
is, gumballs are disposable; kids are not. So my only alternative is to divvy
up what gumballs I can and dispose of the rest. “Okay, think quickly,” I say to
myself. “With 30 gumballs and 4 kids, how many gumballs can I promise to
each kid?”

136 Part II: Writing Your Own Java Programs

I waste no time in programming my computer to figure out this problem for
me. When I’m finished, I have the code in Listing 7-1.

Listing 7-1: How to Keep Four Kids from Throwing Tantrums

class KeepingKidsQuiet {

 public static void main(String args[]) {
 int gumballs;
 int kids;
 int gumballsPerKid;

 gumballs = 30;
 kids = 4;
 gumballsPerKid = gumballs / kids;

 System.out.print("Each kid gets ");
 System.out.print(gumballsPerKid);
 System.out.println(" gumballs.");
 }
}

Figure 7-1 shows a run of the KeepingKidsQuiet program. If each kid gets
seven gumballs, then the kids can’t complain that I’m playing favorites.
They’ll have to find something else to squabble about.

Figure 7-1:
Fair and
square.

At the core of the gumball problem, I’ve got whole numbers — numbers with
no digits beyond the decimal point. When I divide 30 by 4, I get 7½, but I can’t
take the ½ seriously. No matter how hard I try, I can’t divide a gumball in
half, at least not without hearing “my half is bigger than his half.” This fact is
reflected nicely in Java. In Listing 7-1, all three variables (gumballs, kids,
and gumballsPerKid) are of type int. An int value is a whole number.
When you divide one int value by another (as you do with the slash in
Listing 7-1), you get another int. When you divide 30 by 4, you get 7 — not
7½. You see this in Figure 7-1. Taken together, the statements

gumballsPerKid = gumballs/kids;

System.out.print(gumballsPerKid);

put the number 7 on the computer screen.

137 Chapter 7: Numbers and Types

Reading whole numbers from the keyboard
What a life! Yesterday there were 4 kids in my living room, and I had 30 gum-
balls. Today there are 6 kids in my house, and I have 80 gumballs. How can I
cope with all this change? I know! I’ll write a program that reads the numbers
of gumballs and kids from the keyboard. The program is in Listing 7-2, and a
run of the program is shown in Figure 7-2.

Listing 7-2: A More Versatile Program for Kids and Gumballs

import java.util.Scanner;

class KeepingMoreKidsQuiet {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int gumballs;
 int kids;
 int gumballsPerKid;

 System.out.print
 ("How many gumballs? How many kids? ");

 gumballs = keyboard.nextInt();
 kids = keyboard.nextInt();

 gumballsPerKid = gumballs / kids;

 System.out.print("Each kid gets ");
 System.out.print(gumballsPerKid);
 System.out.println(" gumballs.");

 keyboard.close();
 }
}

Figure 7-2:
Next thing
you know,

I’ll have
70 kids

and 1,000
gumballs.

138 Part II: Writing Your Own Java Programs

You should notice a couple of things about Listing 7-2. First, you can read an
int value with the nextInt method. Second, you can issue successive calls
to Scanner methods. In Listing 7-2, I call nextInt twice. All I have to do is
separate the numbers I type by blank spaces. In Figure 7-2, I put one blank
space between my 80 and my 6, but more blank spaces would work as well.

This blank space rule applies to many of the Scanner methods. For example,
here’s some code that reads three numeric values:

gumballs = keyboard.nextInt();
costOfGumballs = keyboard.nextDouble();
kids = keyboard.nextInt();

Figure 7-3 shows valid input for these three method calls.

Figure 7-3:
Three

numbers
for three

Scanner
method

calls.

What you read is what you get
When you’re writing your own code, you should never take anything for
granted. Suppose that you accidentally reverse the order of the gumballs
and kids assignment statements in Listing 7-2:

//This code is misleading:
System.out.print("How many gumballs? How many kids? ");

kids = keyboard.nextInt();
gumballs = keyboard.nextInt();

Here, the line How many gumballs? How many kids? is very misleading.
Because the kids assignment statement comes before the gumballs assign-
ment statement, the first number you type becomes the value of kids, and the
second number you type becomes the value of gumballs. It doesn’t matter
that your program displays the message How many gumballs? How many
kids?. What matters is the order of the assignment statements in the program.

If the kids assignment statement accidentally comes first, you can get a
strange answer, like the zero answer in Figure 7-4. That’s how int division
works. It just cuts off any remainder. Divide a small number (like 6) by a big
number (like 80), and you get 0.

139 Chapter 7: Numbers and Types

Figure 7-4:
How to

make six
kids very
unhappy.

Creating New Values by
Applying Operators

What could be more comforting than your old friend, the plus sign? It was the
first thing you learned about in elementary school math. Almost everybody
knows how to add two and two. In fact, in English usage, adding two and two
is a metaphor for something that’s easy to do. Whenever you see a plus sign,
one of your brain cells says, “Thank goodness, it could be something much
more complicated.”

So Java has a plus sign. You can use the plus sign to add two numbers:

int apples, oranges, fruit;
apples = 5;
oranges = 16;
fruit = apples + oranges;

Of course, the old minus sign is available, too:

apples = fruit - oranges;

Use an asterisk for multiplication and a forward slash for division:

double rate, pay, withholding;
int hours;

rate = 6.25;
hours = 35;
pay = rate * hours;
withholding = pay / 3.0;

 When you divide an int value by another int value, you get an int value.
The computer doesn’t round. Instead, the computer chops off any remainder.
If you put System.out.println(11 / 4) in your program, the computer
prints 2, not 2.75. If you need a decimal answer, make either (or both) of the

140 Part II: Writing Your Own Java Programs

numbers you’re dividing double values. For example, if you put System.
out.println(11.0 / 4) in your program, the computer divides a double
value, 11.0, by an int value, 4. Because at least one of the two values is
double, the computer prints 2.75.

Finding a remainder
There’s a useful arithmetic operator called the remainder operator. The symbol
for the remainder operator is the percent sign (%). When you put System.
out.println(11 % 4) in your program, the computer prints 3. It does so
because 4 goes into 11 who-cares-how-many times, with a remainder of 3.

 Another name for the remainder operator is the modulus operator.

The remainder operator turns out to be fairly useful. After all, a remainder is
the amount you have left over after you divide two numbers. What if you’re
making change for $1.38? After dividing 138 by 25, you have 13 cents left over,
as shown in Figure 7-5.

Figure 7-5:
Hey, bud!

Got change
for 138
sticks?

The code in Listing 7-3 makes use of this remainder idea.

141 Chapter 7: Numbers and Types

Listing 7-3: Making Change

import java.util.Scanner;

class MakeChange {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int quarters, dimes, nickels, cents;
 int whatsLeft, total;

 System.out.print("How many cents do you have? ");
 total = keyboard.nextInt();

 quarters = total / 25;
 whatsLeft = total % 25;

 dimes = whatsLeft / 10;
 whatsLeft = whatsLeft % 10;

 nickels = whatsLeft / 5;
 whatsLeft = whatsLeft % 5;

 cents = whatsLeft;

 System.out.println();
 System.out.println
 ("From " + total + " cents you get");
 System.out.println(quarters + " quarters");
 System.out.println(dimes + " dimes");
 System.out.println(nickels + " nickels");
 System.out.println(cents + " cents");

 keyboard.close();
 }
}

A run of the code in Listing 7-3 is shown in Figure 7-6. You start with a total
of 138 cents. The statement

quarters = total / 25;

divides 138 by 25, giving 5. That means you can make 5 quarters from 138 cents.
Next, the statement

whatsLeft = total % 25;

divides 138 by 25 again, and puts only the remainder, 13, into whatsLeft.
Now you’re ready for the next step, which is to take as many dimes as you
can out of 13 cents.

142 Part II: Writing Your Own Java Programs

Figure 7-6:
Change for

$1.38.

You keep going like this until you’ve divided away all the nickels. At that
point, the value of whatsLeft is just 3 (meaning 3 cents).

 The code in Listing 7-3 makes change in U.S. currency with the following coin
denominations: 1 cent, 5 cents (one nickel), 10 cents (one dime), and 25 cents
(one quarter). With these denominations, the MakeChange program gives
you more than simply a set of coins adding up to 138 cents. The MakeChange
class gives you the smallest number of coins that add up to 138 cents. With
some minor tweaking, you can make the code work in any country’s coinage.
You can always get a set of coins adding up to a total. But, for the denomina-
tions of coins in some countries, you won’t always get the smallest number of
coins that add up to a total. In fact, I’m looking for examples. If your country’s
coinage prevents MakeChange from always giving the best answer, please,
send me an e-mail (BeginProg@allmycode.com), tweet to @allmycode, or
post on Facebook at /allmycode. Thanks.

 When two or more variables have similar types, you can create the variables
with combined declarations. For example, Listing 7-3 has two combined dec-
larations — one for the variables quarters, dimes, nickels, and cents
(all of type int); another for the variables whatsLeft and total (both of
type int). But to create variables of different types, you need separate decla-
rations. For example, to create an int variable named total and a double
variable named amount, you need one declaration int total; and another
declaration double amount;.

 Listing 7-3 has a call to System.out.println() with nothing in the paren-
theses. When the computer executes this statement, the cursor jumps to a
new line on the screen. (I often use this statement to put a blank line in a pro-
gram’s output.)

mailto://BeginProg@allmycode.com

143 Chapter 7: Numbers and Types

If thine int offends thee, cast it out
The run in Figure 7-6 seems artificial. Why
would you start with 138 cents? Why not use
the more familiar $1.38? The reason is that
the number 1.38 isn’t a whole number, and
whole numbers are more accurate than other
kinds of numbers. In fact, without whole num-
bers, the remainder operator isn’t very useful.
For example, the value of 1.38 % 0.25 is
0.1299999999999999. All those nines
are tough to work with. Imagine reading your
credit card statement and seeing that you
owe $0.1299999999999999. You’d probably pay
$0.13 and let the credit card company keep the
change. But after years of rounding numbers,
the credit card company would make a fortune!
Chapter 8 describes inaccuracies caused by
using double values in a bit more detail.

Throughout this book, I illustrate Java’s double
type with programs about money. Many authors
do the same thing. But for greater accuracy,
avoid using double values for money. Instead,
you should use int values or use the long
values that I describe in the last section of this
chapter. Even better, look up BigInteger and
BigDecimal in Java’s API documentation.

These BigSomethingOrOther types are
cumbersome to use, but they provide industrial-
strength numeric range and accuracy.

Now what if you want to input 1.38, and then
have the program take your 1.38 and turn it into
138 cents? How can you get your program to
do this?

My first idea is to multiply 1.38 by 100:

//This doesn't quite work.
double amount;
int total;
amount=keyboard.nextDouble();
total=amount*100;

In everyday arithmetic, multiplying by 100 does
the trick. But computers are fussy. With a com-
puter, you have to be very careful when you mix
int values and double values. (See the first
figure in this sidebar.)

(continued)

144 Part II: Writing Your Own Java Programs

The increment and decrement operators
Java has some neat little operators that make life easier (for the computer’s
processor, for your brain, and for your fingers). Altogether, there are four
such operators — two increment operators and two decrement operators.
The increment operators add one, and the decrement operators subtract
one. To see how they work, you need some examples.

Using preincrement
The first example is in Figure 7-7.

Figure 7-7:
Using prein-

crement.

A run of the program in Figure 7-7 is shown in Figure 7-8. In this horribly
uneventful run, the count of gumballs is displayed three times.

To cram a double value into an int variable,
you need something called casting. When you
cast a value, you essentially say, “I’m aware that
I’m trying to squish a double value into an int
variable. It’s a tight fit, but I want to do it anyway.”

To do casting, you put the name of a type in
parentheses, as follows:

//This works!
total = (int) (amount * 100);

This casting notation turns the double value
138.00 into the int value 138, and everybody’s
happy. (See the second figure in this sidebar.)

(continued)

145 Chapter 7: Numbers and Types

Figure 7-8:
A run of the

preincre-
ment code

(the code in
Figure 7-7).

The double plus sign goes under two different names, depending on where you
put it. When you put the ++ before a variable, the ++ is called the preincrement
operator. In the word preincrement, the pre stands for before. In this setting,
the word before has two different meanings:

 ✓ You’re putting ++ before the variable.

 ✓ The computer adds 1 to the variable’s value before the variable is used
in any other part of the statement.

Figure 7-9 has a slow-motion, instant replay of the preincrement opera-
tor’s action. In Figure 7-9, the computer encounters the System.out.
println(++gumballs) statement. First, the computer adds 1 to gumballs
(raising the value of gumballs to 29). Then the computer executes System.
out.println, using the new value of gumballs (29).

Figure 7-9:
The pre-

increment
operator in

action.

Using postincrement
An alternative to preincrement is postincrement. With postincrement, the post
stands for after. The word after has two different meanings:

 ✓ You put ++ after the variable.

 ✓ The computer adds 1 to the variable’s value after the variable is used in
any other part of the statement.

146 Part II: Writing Your Own Java Programs

Figure 7-10 shows a close-up view of the postincrement operator’s action. In
Figure 7-10, the computer encounters the System.out.println (gumballs++)
statement. First, the computer executes System.out.println, using the old
value of gumballs (28). Then the computer adds 1 to gumballs (raising the
value of gumballs to 29).

Figure 7-10:
The postin-

crement
operator in

action.

Look at the bold line of code in Figure 7-11. The computer prints the old value
of gumballs (28) on the screen. Only after printing this old value does the
computer add 1 to gumballs (raising the gumballs value from 28 to 29).

Figure 7-11:
Using

postincre-
ment.

 With System.out.println(gumballs++), the computer adds 1 to
gumballs after printing the old value that gumballs already had.

147 Chapter 7: Numbers and Types

A run of the code in Figure 7-11 is shown in Figure 7-12. Compare Figure 7-12
with the run in Figure 7-8.

Figure 7-12:
A run of the

postincre-
ment code

(the code in
Figure 7-11).

 ✓ With preincrement in Figure 7-8, the second number that’s displayed is 29.

 ✓ With postincrement in Figure 7-12, the second number that’s displayed
is 28.

 In Figure 7-12, the number 29 doesn’t show up on the screen until the
end of the run, when the computer executes one last System.out.
println(gumballs).

 Are you trying to decide between using preincrement or postincrement?
Ponder no longer. Most programmers use postincrement. In a typical Java
program, you often see things like gumballs++. You seldom see things like
++gumballs.

In addition to preincrement and postincrement, Java has two operators that
use --. These operators are called predecrement and postdecrement:

 ✓ With predecrement (--gumballs), the computer subtracts 1 from the
variable’s value before the variable is used in the rest of the statement.

 ✓ With postdecrement (gumballs--), the computer subtracts 1 from the
variable’s value after the variable is used in the rest of the statement.

Assignment operators
If you read the previous section — the section about operators that add
1 — you may be wondering whether you can manipulate these operators to
add 2, or add 5, or add 1000000. Can you write gumballs++++ and still call
yourself a Java programmer? Well, you can’t. If you try it, Eclipse will give you
an error message:

Invalid argument to operation ++/--

148 Part II: Writing Your Own Java Programs

Statements and expressions
Any part of a computer program that has a value is called an expression. If you write

gumballs = 30;

then 30 is an expression (an expression whose value is the quantity 30). If you write

amount = 5.95 + 25.00;

then 5.95 + 25.00 is an expression (because 5.95 + 25.00 has the value 30.95). If you write

gumballsPerKid =
 gumballs / kids;

then gumballs / kids is an expression. (The value of the expression gumballs / kids
depends on whatever values the variables gumballs and kids have when the statement with
the expression in it is executed.)

This brings us to the subject of the pre- and postincrement and decrement operators. There are
two ways to think about these operators: the way everyone understands it and the right way. The
way I explain it in most of this section (in terms of time, with before and after) is the way everyone
understands the concept. Unfortunately, the way everyone understands the concept isn’t really
the right way. When you see ++ or --, you can think in terms of time sequence. But occasionally
some programmer uses ++ or -- in a convoluted way, and the notions of before and after break
down. So if you’re ever in a tight spot, you should think about these operators in terms of state-
ments and expressions.

First, remember that a statement tells the computer to do something, and an expression has
a value. (Statements are described in Chapter 4, and expressions are described earlier in this
 sidebar.) Which category does gumballs++ belong to? The surprising answer is both. The Java
code gumballs++ is both a statement and an expression.

Suppose that, before executing the code System.out.println(gumballs++), the value
of gumballs is 28:

 ✓ As a statement, gumballs++ tells the computer to add 1 to gumballs.

 ✓ As an expression, the value of gumballs++ is 28, not 29.

So even though gumballs gets 1 added to it, the code System.out.println(gumballs++)
really means System.out.println(28). (See the figure in this sidebar.)

Now, almost everything you just read about gumballs++ is true about ++gumballs. The only
difference is, as an expression, ++gumballs behaves in a more intuitive way. Suppose that
before executing the code System.out.println(++gumballs), the value of gumballs
is 28:

 ✓ As a statement, ++gumballs tells the computer to add 1 to gumballs.

 ✓ As an expression, the value of ++gumballs is 29.

So with System.out.println (++gumballs), the variable gumballs gets 1 added to
it, and the code System.out.println(++gumballs) really means System.out.
println(29).

149 Chapter 7: Numbers and Types

If you don’t use Eclipse, you may see a different error message:

unexpected type
required: variable
found : value
 gumballs++++;
 ^

Eclipse or no Eclipse, the bottom line is the same: Namely, your code con-
tains an error, and you have to fix it.

So how can you add values other than 1? As luck would have it, Java has
plenty of assignment operators you can use. With an assignment operator, you
can add, subtract, multiply, or divide by anything you want. You can do other
cool operations, too.

For example, you can add 1 to the kids variable by writing

kids += 1;

Is this better than kids++ or kids = kids + 1? No, it’s not better. It’s just
an alternative. But you can add 5 to the kids variable by writing

kids += 5;

You can’t easily add 5 with preincrement or postincrement. And what if the
kids get stuck in an evil scientist’s cloning machine? The statement

150 Part II: Writing Your Own Java Programs

kids *= 2;

multiplies the number of kids by 2.

With the assignment operators, you can add, subtract, multiply, or divide a
variable by any number. The number doesn’t have to be a literal. You can use
a number-valued expression on the right side of the equal sign:

double amount = 5.95;
double shippingAndHandling = 25.00, discount = 0.15;

amount += shippingAndHandling;
amount -= discount * 2;

The preceding code adds 25.00 (shippingAndHandling) to the value of
amount. Then the code subtracts 0.30 (discount * 2) from the value of
amount. How generous!

 If the word “literal” doesn’t ring any bells for you, refer to Chapter 4.

Size Matters
Here are today’s new vocabulary words:

foregift (fore-gift) n. A premium that a lessee pays to the lessor upon the
taking of a lease.

hereinbefore (here-in-be-fore) adv. In a previous part of this document.

Now imagine yourself scanning some compressed text. In this text, all blanks
have been removed to conserve storage space. You come upon the following
sequence of letters:

hereinbeforegiftedit

The question is, what do these letters mean? If you knew each word’s length,
you could answer the question.

here in be foregift edit

hereinbefore gifted it

herein before gift Ed it

A computer faces the same kind of problem. When a computer stores several
numbers in memory or on a disk, the computer doesn’t put blank spaces
between the numbers. So imagine that a small chunk of the computer’s
memory looks like the stuff in Figure 7-13. (The computer works exclusively

151 Chapter 7: Numbers and Types

with zeros and ones, but Figure 7-13 uses ordinary digits. With ordinary
digits, it’s easier to see what’s going on.)

Figure 7-13:
Storing the
digits 4221.

What number or numbers are stored in Figure 7-13? Is it two numbers, 42 and
21? Or is it one number, 4,221? And what about storing four numbers, 4, 2, 2,
and 1? It all depends on the amount of space each number consumes.

Imagine a variable that stores the number of paydays in a month. This number
never gets bigger than 31. You can represent this small number with just eight
zeros and ones. But what about a variable that counts stars in the universe?
That number could easily be more than a trillion, and to represent one trillion
accurately, you need 64 zeros and ones.

At this point, Java comes to the rescue. Java has four types of whole numbers.
Just as in Listing 7-1, I declare

int gumballsPerKid;

I can also declare

byte paydaysInAMonth;
short sickDaysDuringYourEmployment;
long numberOfStars;

Each of these types (byte, short, int, and long) has its own range of possible
values (see Table 7-1).

Table 7-1 Java’s Primitive Numeric Types
Type Name Range of Values
Whole Number Types

byte –128 to 127

short –32768 to 32767

int –2147483648 to 2147483647

long –9223372036854775808 to 9223372036854775807

Decimal Number Types

float –3.4×1038 to 3.4×1038

double –1.8×10308 to 1.8×10308

152 Part II: Writing Your Own Java Programs

Java has two types of decimal numbers (numbers with digits to the right of
the decimal point). Just as in Listing 6-1 (way back in Chapter 6), I declare

double amount;

I can also declare

float monthlySalary;

Given the choice between double and float, I always choose double.
A variable of type double has a greater possible range of values and much
greater accuracy. (See Table 7-1.)

Table 7-1 lists six of Java’s primitive types (also known as simple types). Java
has only eight primitive types, so only two of Java’s primitive types are miss-
ing from Table 7-1.

Chapter 8 describes the two remaining primitive types. Chapter 17 introduces
types that aren’t primitive.

As a beginning programmer, you don’t have to choose among the types in
Table 7-1. Just use int for whole numbers and double for decimal numbers.
If, in your travels, you see something like short or float in someone else’s
program, just remember the following:

 ✓ The types byte, short, int, and long represent whole numbers.

 ✓ The types float and double represent decimal numbers.

Most of the time, that’s all you need to know.

Chapter 8

Numbers? Who Needs Numbers?
In This Chapter
▶ Working with characters

▶ Dealing with “true” or “false” values

▶ Rounding out your knowledge of Java’s primitive types

I
don’t particularly like fax machines. They’re so inefficient. Send a short fax,
and what do you have? You have two slices of a tree — one at the sending

end, and another at the receiving end. You also have millions of dots — dots
that scan tiny little lines across the printed page. The dots distinguish patches
of light from patches of darkness. What a waste!

Compare a fax with an e-mail message. Using e-mail, I can send a 25-word con-
test entry with just 2,500 zeros and ones, and I don’t waste any paper. Best of
all, an e-mail message doesn’t describe light dots and dark dots. An e-mail mes-
sage contains codes for each of the letters — a short sequence of zeros and
ones for the letter A, a different sequence of zeros and ones for the letter B,
and so on. What could be simpler?

Now imagine sending a one-word fax. The word is “true,” which is understood
to mean, “true, I accept your offer to write Beginning Programming with Java
For Dummies, 4th Edition.” A fax with this message sends a picture of the four
letters t-r-u-e, with fuzzy lines where dirt gets on the paper and little white
dots where the cartridge runs short on toner.

But really, what’s the essence of the “true” message? There are just two pos-
sibilities, aren’t there? The message could be “true” or “false,” and to represent
those possibilities, I need very little fanfare. How about 0 for “false” and 1 for
“true?”

They ask, “Do you accept our offer to write Beginning Programming with
Java For Dummies, 4th Edition?”

“1,” I reply.

Too bad I didn’t think of that a few months ago. Anyway, this chapter deals
with letters, truth, falsehood, and other such things.

154 Part II: Writing Your Own Java Programs

Characters
In Chapters 6 and 7, you store numbers in all your variables. That’s fine, but
there’s more to life than numbers. For example, I wrote this book with a com-
puter, and this book contains thousands and thousands of non-numeric things
called characters.

The Java type that’s used to store characters is char. Listing 8-1 has a simple
program that uses the char type, and a run of the Listing 8-1 program is
shown in Figure 8-1.

Listing 8-1: Using the char Type

class LowerToUpper {

 public static void main(String args[]) {
 char smallLetter, bigLetter;

 smallLetter = 'b';
 bigLetter = Character.toUpperCase(smallLetter);
 System.out.println(bigLetter);
 }
}

Figure 8-1:
Exciting

program
output!

In Listing 8-1, the first assignment statement stores the letter b in the
smallLetter variable. In that statement, notice how b is surrounded by
single quote marks. In a Java program, every char literal starts and ends
with a single quote mark.

 When you surround a letter with quote marks, you tell the computer that the
letter isn’t a variable name. For example, in Listing 8-1, the incorrect statement
smallLetter = b would tell the computer to look for a variable named b.
Because there’s no variable named b, you’d get a b cannot be resolved
to a variable message.

In the second assignment statement of Listing 8-1, the program calls an API
method whose name is Character.toUpperCase. The method Character.
toUpperCase does what its name suggests — the method produces the

155 Chapter 8: Numbers? Who Needs Numbers?

uppercase equivalent of a lowercase letter. In Listing 8-1, this uppercase equiv-
alent (the letter B) is assigned to the variable bigLetter, and the B that’s in
bigLetter is printed on the screen, as illustrated in Figure 8-2.

Figure 8-2:
The action in

Listing 8-1.

 When the computer displays a char value on the screen, the computer doesn’t
surround the character with single quote marks.

I digress . . .
A while ago, I wondered what would happen if I called the Character.
toUpperCase method and fed the method a character that isn’t lowercase
to begin with. I yanked out the Java API documentation, but I found no
useful information. The documentation said that toUpperCase “converts
the character argument to uppercase using case mapping information from
the UnicodeData file.” Thanks, but that’s not useful to me.

Silly as it seems, I asked myself what I’d do if I were the toUpperCase method.
What would I say if someone handed me a capital R and told me to capitalize
that letter? I’d say, “Take back your stinking capital R.” In the lingo of comput-
ing, I’d send that person an error message. So I wondered whether I’d get an
error message if I applied Character.toUpperCase to the letter R.

I tried it. I cooked up the experiment in Listing 8-2.

156 Part II: Writing Your Own Java Programs

Listing 8-2: Investigating the Behavior of toUpperCase

class MyExperiment {

 public static void main(String args[]) {
 char smallLetter, bigLetter;

 smallLetter = 'R';
 bigLetter = Character.toUpperCase(smallLetter);
 System.out.println(bigLetter);

 smallLetter = '3';
 bigLetter = Character.toUpperCase(smallLetter);
 System.out.println(bigLetter);
 }
}

In my experiment, I didn’t mix chemicals and blow things up. Here’s what I did
instead:

 ✓ I assigned 'R' to smallLetter.

 The toUpperCase method took the uppercase R and gave me back
another uppercase R. (See Figure 8-3.) I got no error message. This told me
what the toUpperCase method does with a letter that’s already upper-
case. The method does nothing.

 ✓ I assigned '3' to smallLetter.

 The toUpperCase method took the digit 3 and gave me back the same
digit 3 (see Figure 8-3). I got no error message. This told me what the
toUpperCase method does with a character that’s not a letter. It does
nothing, zip, zilch, bupkis.

I write about this experiment to make an important point. When you don’t
understand something about computer programming, it often helps to write a
test program. Make up an experiment and see how the computer responds.

I guessed that handing a capital R to the toUpperCase method would give
me an error message, but I was wrong. See? The answers to questions aren’t
handed down from heaven. The people who created the Java API made

Figure 8-3:
Running

the code in
Listing 8-2.

157 Chapter 8: Numbers? Who Needs Numbers?

decisions. They made some obvious choices, and they also made some unex-
pected choices. No one knows everything about Java’s features, so don’t
expect to cram all the answers into your head.

The Java documentation is great, but for every question that the documenta-
tion answers, it ignores three other questions. So be bold. Don’t be afraid to
tinker. Write lots of short, experimental programs. You can’t break the com-
puter, so play tough with it. Your inquisitive spirit will always pay off.

Reading and understanding Java’s API documentation is an art, not a science.
For advice on making the most of these docs, read my article “Making Sense
of Java’s API Documentation,” at http://www.dummies.com/extras/
beginningprogrammingwithjava.

One character only, please
A char variable stores only one character. So if you’re tempted to write the
following statements

char smallLetters;
smallLetters = 'barry'; //Don't do this

please resist the temptation. You can’t store more than one letter at a time
in a char variable, and you can’t put more than one letter between a pair
of single quotes. If you’re trying to store words or sentences (not just single
letters), then you need to use something called a String. For a look at Java’s
String type, see Chapter 18.

Variables and recycling
In Listing 8-2, I use smallLetter twice, and I use bigLetter twice. That’s
why they call these things variables. First, the value of smallLetter is R.
Later, I vary the value of smallLetter so that the value of smallLetter
becomes 3.

When I assign a new value to smallLetter, the old value of smallLetter
gets obliterated. For example, in Figure 8-4, the second smallLetter assign-
ment puts 3 into smallLetter. When the computer executes this second
assignment statement, the old value R is gone.

http://www.dummies.com/extras/beginningprogrammingwithjava
http://www.dummies.com/extras/beginningprogrammingwithjava

158 Part II: Writing Your Own Java Programs

Figure 8-4:
Varying

the value
of small
 Letter.

Is that okay? Can you afford to forget the value that smallLetter once had?
Yes, in Listing 8-2, it’s okay. After you’ve assigned a value to bigLetter with
the statement

bigLetter = Character.toUpperCase(smallLetter);

you can forget all about the existing smallLetter value. You don’t need to
do this:

// This code is cumbersome.
// The extra variables are unnecessary.
char smallLetter1, bigLetter1;
char smallLetter2, bigLetter2;

smallLetter1 = 'R';
bigLetter1 = Character.toUpperCase(smallLetter1);
System.out.println(bigLetter1);

smallLetter2 = '3';
bigLetter2 = Character.toUpperCase(smallLetter2);
System.out.println(bigLetter2);

You don’t need to store the old and new values in separate variables. Instead,
you can reuse the variables smallLetter and bigLetter as in Listing 8-2.

This reuse of variables doesn’t save you from a lot of extra typing. It doesn’t
save much memory space, either. But reusing variables keeps the program
uncluttered. When you look at Listing 8-2, you can see at a glance that the
code has two parts, and you see that both parts do roughly the same thing.

159 Chapter 8: Numbers? Who Needs Numbers?

The code in Listing 8-2 is simple and manageable. In such a small program,
simplicity and manageability don’t matter very much. But in a large program,
it helps to think carefully about the use of each variable.

When not to reuse a variable
The previous section discusses the reuse of variables to make a program
slick and easy to read. This section shows you the flip side. In this section,
the problem at hand forces you to create new variables.

Suppose that you’re writing code to reverse the letters in a four-letter word.
You store each letter in its own separate variable. Listing 8-3 shows the code,
and Figure 8-5 shows the code in action.

Listing 8-3: Making a Word Go Backward

import java.util.Scanner;

class ReverseWord {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 char c1, c2, c3, c4;

 c1 = keyboard.findWithinHorizon(".", 0).charAt(0);
 c2 = keyboard.findWithinHorizon(".", 0).charAt(0);
 c3 = keyboard.findWithinHorizon(".", 0).charAt(0);
 c4 = keyboard.findWithinHorizon(".", 0).charAt(0);

 System.out.print(c4);
 System.out.print(c3);
 System.out.print(c2);
 System.out.print(c1);
 System.out.println();

 keyboard.close();
 }
}

Figure 8-5:
Stop those

pots!

160 Part II: Writing Your Own Java Programs

The trick in Listing 8-3 is as follows:

 ✓ Assign values to variables c1, c2, c3, and c4 in that order.

 ✓ Display these variables’ values on the screen in reverse order: c4, c3,
c2, and then c1, as illustrated in Figure 8-6.

Figure 8-6:
Using four
variables.

If you don’t use four separate variables, then you don’t get the result that you
want. For example, imagine that you store characters in only one variable.
You run the program and type the word pots. When it’s time to display the
word in reverse, the computer remembers the final s in the word pots. But
the computer doesn’t remember the p, the o, or the t, as shown in Figure 8-7.

Figure 8-7:
Getting
things
wrong

because
you used
only one
variable.

161 Chapter 8: Numbers? Who Needs Numbers?

(continued)

What’s behind all this findWithinHorizon
nonsense?

Without wallowing in too much detail, here’s how the findWithinHorizon(".", 0).
charAt(0) technique works:

Java’s findWithinHorizon method looks for things in the input. The things the method
finds depend on the stuff you put in parentheses. For example, a call to findWithinHorizon
("\\d\\d\\d", 0) looks for a group consisting of three digits. With the following line of code

System.out.println(keyboard.
 findWithinHorizon("\\d\\d\\d", 0));

I can type

Testing 123 Testing Testing

and the computer responds by displaying

123

In the call findWithinHorizon("\\d\\d\\d", 0), each \\d stands for a single digit.
This \\d business is one of many abbreviations in special code called regular expressions.

Now here’s something strange. In the world of regular expressions, a dot stands for any
character at all. (That is, a dot stands for “any character, not necessarily a dot.”) So
findWithinHorizon(".", 0) tells the computer to find the next character of any
kind that the user types on the keyboard. When you’re trying to input a single character,
findWithinHorizon(".", 0) is mighty useful.

In the call findWithinHorizon("\\d\\d\\d", 0), the 0 tells findWithinHorizon
to keep searching until the end of the input. This value 0 is a special case because anything other
than 0 limits the search to a certain number of characters. (That’s why the method name contains
the word horizon. The horizon is as far as the method sees.) Here are a few examples:

 ✓ With the same input Testing 123 Testing Testing , the call find
WithinHorizon("\\d\\d\\d", 9) returns null. It returns null because the first
nine characters of the input (the characters Testing 1 — seven letters, a blank space, and
a digit) don’t contain three consecutive digits. These nine characters don’t match the pattern
\\d\\d\\d.

 ✓ With the same input, the call findWithinHorizon("\\d\\d\\d", 10) also
returns null. It returns null because the first ten characters of the input (the characters
Testing 12) don’t contain three consecutive digits.

 ✓ With the same input, the call findWithinHorizon("\\d\\d\\d", 11) returns 123.
It returns 123 because the first 11 characters of the input (the characters Testing 123)
contain these 3 consecutive digits.

 ✓ With the input A57B442123 Testing, the call findWithinHorizon("\\d\\
d\\d", 12) returns 442. It returns 442 because among the first 12 characters of the input
(the characters A57B442123 Test), the first sequence consisting of 3 consecutive digits
is the sequence 442.

162 Part II: Writing Your Own Java Programs

I wish I could give you 12 simple rules to help you decide when and when
not to reuse variables. The problem is, I can’t. It all depends on what you’re
trying to accomplish. So how do you figure out on your own when and when
not to reuse variables? Like the guy says to the fellow who asks how to get to
Carnegie Hall, “Practice, practice, practice.”

Reading characters
The people who created Java’s Scanner class didn’t create a next method
for reading a single character. So to input a single character, I paste two Java
API methods together. I use the findWithinHorizon and charAt methods.

Table 5-1 in Chapter 5 introduces this findWithinHorizon(".", 0).
charAt(0) technique for reading a single input character, and Listing 8-3 uses
the technique to read one character at a time. (In fact, Listing 8-3 uses the tech-
nique four times to read four individual characters.)

Notice the format for the input in Figure 8-5. To enter the characters in
the word pots, I type four letters, one after another, with no blank spaces
between the letters and no quote marks. The findWithinHorizon(".",
0).charAt(0) technique works that way, but don’t blame me or my tech-
nique. Other developers’ character-reading methods work the same way. No
matter whose methods you use, reading a character differs from reading a
number. Here’s how:

 ✓ With methods like nextDouble and nextInt, you type blank spaces
between numbers.

 If I type 80 6, then two calls to nextInt read the number 80, followed
by the number 6. If I type 806, then a single call to nextInt reads the
number 806 (eight hundred six), as illustrated in Figure 8-8.

But wait! To grab a single character from the keyboard, I call findWithinHorizon(".", 0).
charAt(0). What’s the role of charAt(0) in reading a single character? Unfortunately, any
findWithinHorizon call behaves as though it’s finding a bunch of characters, not just a single
character. Even when you call findWithinHorizon(".", 0), and the computer fetches
just one letter from the keyboard, the Java program treats that letter as one of possibly many input
characters.

The call to charAt(0) takes care of the multicharacter problem. This charAt(0) call tells
Java to pick the initial character from any of the characters that findWithinHorizon fetches.

Yes, it’s complicated. And yes, I don’t like having to explain it. But no, you don’t have to understand
any of the details in this sidebar. Just read the details if you want to read them and skip the details
if you don’t care.

(continued)

163 Chapter 8: Numbers? Who Needs Numbers?

 ✓ With findWithinHorizon(".", 0).charAt(0), you don’t type blank
spaces between characters.

 If I type po, then two successive calls to findWithinHorizon(".",
0).charAt(0) read the letter p, followed by the letter o. If I type p o,
then two calls to findWithinHorizon(".", 0).charAt(0) read the
letter p, followed by a blank space character. (Yes, the blank space is a
character!) Again, see Figure 8-8.

Figure 8-8:
Reading

num-
bers and

characters.

 To represent a lone character in the text of a computer program, you surround
the character with single quote marks. But, when you type a character as part
of a program’s input, you don’t surround the character with quote marks.

 Suppose that your program calls nextInt and then findWithinHorizon
(".", 0).charAt(0). If you type 80x on the keyboard, you get an error mes-
sage. (The message says InputMismatchException. The nextInt method
expects you to type a blank space after each int value.) Now what happens if,
instead of typing 80x, you type 80 x on the keyboard? Then the program gets
80 for the int value, followed by a blank space for the character value. For
the program to get the x, the program has to call findWithinHorizon(".",
0).charAt(0) one more time. It seems wasteful, but it makes sense in the
long run.

164 Part II: Writing Your Own Java Programs

The boolean Type
I’m in big trouble. I have 140 gumballs, and 15 kids are running around and
screaming in my living room. They’re screaming because each kid wants 10
gumballs, and they’re running because that’s what kids do in a crowded living
room. I need a program that tells me if I can give 10 gumballs to each kid.

I need a variable of type boolean. A boolean variable stores one of 2
values — true or false (true, I can give 10 gumballs to each kid; or
false, I can’t give 10 gumballs to each kid). Anyway, the kids are going
berserk, so I’ve written a short program and put it in Listing 8-4. The
output of the program is shown in Figure 8-9.

Listing 8-4: Using the boolean Type

class CanIKeepKidsQuiet {

 public static void main(String args[]) {
 int gumballs;
 int kids;
 int gumballsPerKid;
 boolean eachKidGetsTen;

 gumballs = 140;
 kids = 15;
 gumballsPerKid = gumballs / kids;

 System.out.print("True or false? ");
 System.out.println("Each kid gets 10 gumballs.");
 eachKidGetsTen = gumballsPerKid >= 10;
 System.out.println(eachKidGetsTen);
 }
}

Figure 8-9:
Oh, no!

In Listing 8-4, the variable eachKidGetsTen is of type boolean. So the value
stored in the eachKidGetsTen variable can be either true or false. (I can’t
store a number or a character in the eachKidGetsTen variable.)

To find a value for the variable eachKidGetsTen, the program checks to
see whether gumballsPerKid is greater than or equal to ten. (The sym-
bols >= stand for “greater than or equal to.” What a pity! There’s no ≥ key on

165 Chapter 8: Numbers? Who Needs Numbers?

the standard computer keyboard.) Because gumballsPerKid is only nine,
gumballsPerKid >= 10 is false. So eachKidGetsTen becomes false.
Yikes! The kids will tear the house apart! (Before they do, take a look at
Figure 8-10.)

Figure 8-10:
Assigning a
value to the
eachKid
 GetsTen

variable.

Expressions and conditions
In Listing 8-4, the code gumballsPerKid >= 10 is an expression. The expres-
sion’s value depends on the value stored in the variable gumballsPerKid.
On a bad day, the value of gumballsPerKid >= 10 is false. So the variable
eachKidGetsTen is assigned the value false.

An expression like gumballsPerKid >= 10, whose value is either true or
false, is sometimes called a condition.

 Values like true and false may look as though they contain characters, but
they really don’t. Internally, the Java Virtual Machine doesn’t store boolean
values with the letters t-r-u-e or f-a-l-s-e. Instead, the JVM stores codes, like 0
for false and 1 for true. When the computer displays a boolean value (as in
System.out.println(eachKidGetsTen)), the Java Virtual Machine con-
verts a code like 0 into the five-letter word false.

Comparing numbers; comparing characters
In Listing 8-4, I compare a variable’s value with the number 10. I use the >=
operator in the expression

gumballsPerKid >= 10

166 Part II: Writing Your Own Java Programs

Of course, the greater-than-or-equal-to comparison gets you only so far.
Table 8-1 shows you the operators you can use to compare things with one
another.

Table 8-1 Comparison Operators
Operator
Symbol

Meaning Example

== is equal to yourGuess ==
winningNumber

!= is not equal to 5 != numberOfCows

< is less than strikes < 3

> is greater than numberOfBoxtops > 1000

<= is less than or equal
to

numberOfCows +
numberOfBulls <= 5

>= is greater than or
equal to

gumballsPerKid >= 10

With the operators in Table 8-1, you can compare both numbers and characters.

 Notice the double equal sign in the first row of Table 8-1. Don’t try to use
a single equal sign to compare two values. The expression yourGuess =
winningNumber (with a single equal sign) doesn’t compare yourGuess
with winningNumber. Instead, yourGuess = winningNumber changes
the value of yourGuess. (It assigns the value of winningNumber to the
variable yourGuess.)

You can compare other things (besides numbers and characters) with the ==
and != operators. But when you do, you have to be careful. For more infor-
mation, see Chapter 18.

Comparing numbers
Nothing is more humdrum than comparing numbers. “True or false? Five is
greater than or equal to ten.” False. Five is neither greater than nor equal to
ten. See what I mean? Bo-ring.

Comparing whole numbers is an open-and-shut case. But unfortunately, when
you compare decimal numbers, there’s a wrinkle. Take a program for convert-
ing from Celsius to Fahrenheit. Wait! Don’t take just any such program; take
the program in Listing 8-5.

167 Chapter 8: Numbers? Who Needs Numbers?

Listing 8-5: It’s Warm and Cozy in Here

import java.util.Scanner;

class CelsiusToFahrenheit {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 double celsius, fahrenheit;

 System.out.print("Enter the Celsius temperature: ");
 celsius = keyboard.nextDouble();

 fahrenheit = 9.0 / 5.0 * celsius + 32.0;

 System.out.print("Room temperature? ");
 System.out.println(fahrenheit == 69.8);

 keyboard.close();
 }
}

If you run the code in Listing 8-5 and input the number 21, the computer finds
the value of 9.0 / 5.0 * 21 + 32.0. Believe it or not, you want to check
the computer’s answer. (Who knows? Maybe the computer gets it wrong!)
You need to do some arithmetic, but please don’t reach for your calculator.
A calculator is just a small computer, and machines of that kind stick up for
one another. To check the computer’s work, you need to do the arithmetic by
hand. What? You say you’re math phobic? Well, don’t worry. I’ve done all the
math in Figure 8-11.

Figure 8-11:
The

Fahrenheit
temperature

is exactly
69.8.

168 Part II: Writing Your Own Java Programs

If you do the arithmetic by hand, the value you get for 9.0 / 5.0 * 21 +
32.0 is exactly 69.8. So run the code in Listing 8-5 and give celsius the
value 21. You should get true when you display the value of fahrenheit
== 69.8, right?

Well, no. Take a look at the run in Figure 8-12. When the computer evaluates
fahrenheit == 69.8, the value turns out to be false, not true. What’s
going on here?

Figure 8-12:
A run of

the code in
Listing 8-5.

 Grouping separators vary from one country to another. The run shown in
Figure 8-12 works almost everywhere in the world. But if the Celsius tempera-
ture is twenty-one-and-a-half degrees, you type 21.5 (with a dot) in some
countries and 21,5 (with a comma) in others. Your computer’s hardware
doesn’t have a built-in “country-ometer,” but when you install the computer’s
operating system, you tell it what country you live in. Java programs access
this information and use it to customize the way the nextDouble method
works.

A little detective work can go a long way. So review the facts:

 ✓ Fact: The value of fahrenheit should be exactly 69.8.

 ✓ Fact: If fahrenheit is 69.8, then fahrenheit == 69.8 is true.

 ✓ Fact: In Figure 8-12, the computer displays the word false. So the expres-
sion fahrenheit == 69.8 isn’t true.

How do you reconcile these facts? There can be little doubt that fahrenheit
== 69.8 is false, so what does that say about the value of fahrenheit?
Nowhere in Listing 8-5 is the value of fahrenheit displayed. Could that be
the problem?

At this point, I use a popular programmer’s trick. I add statements to display
the value of fahrenheit.

fahrenheit = 9.0 / 5.0 * celsius + 32.0;
System.out.print("fahrenheit: "); //Added
System.out.println(fahrenheit); //Added

169 Chapter 8: Numbers? Who Needs Numbers?

A run of the enhanced code is shown in Figure 8-13. As you can see, the com-
puter misses its mark. Instead of the expected value 69.8, the computer’s
value for 9.0 / 5.0 * 21 + 32.0 is 69.80000000000001. That’s just the
way the cookie crumbles. The computer does all its arithmetic with zeros
and ones, so the computer’s arithmetic doesn’t look like the base-10 arith-
metic in Figure 8-11. The computer’s answer isn’t wrong. The answer is just
slightly inaccurate.

Figure 8-13:
The

 fahrenheit
variable’s
full value.

In an example in Chapter 7, Java’s remainder operator (%) gives you the
answer 0.1299999999999999 instead of the 0.13 that you expect. The
same strange kind of thing happens in this section’s example. But this sec-
tion’s code doesn’t use an exotic remainder operator. This section’s code
uses your old friends — division, multiplication, and addition.

So be careful when you compare two numbers for equality (with ==) or for
inequality (with !=). Little inaccuracies can creep in almost anywhere when
you work with Java’s double type or with Java’s float type. And several
little inaccuracies can build on one another to become very large inaccura-
cies. When you compare two double values or two float values, the values
are almost never dead-on equal to one another.

 If your program isn’t doing what you think it should do, check your suspi-
cions about the values of variables. Add print and println statements to
your code.

 When you compare double values, give yourself some leeway. Instead of com-
paring for exact equality, ask whether a particular value is reasonably close to
the expected value. For example, use a condition like fahrenheit >= 69.8 -
0.01 && fahrenheit <= 69.8 + 0.01 to find out whether fahrenheit
is within 0.01 of the value 69.8. To read more about conditions containing Java’s
&& operator, see Chapter 10.

170 Part II: Writing Your Own Java Programs

Automated debugging
If your program isn’t working correctly, you can try something called a debugger. A debugger auto-
matically adds invisible print and println calls to your suspicious code. In fact, debuggers have
all kinds of features to help you diagnose problems. For example, a debugger can pause a run of your
program and accept special commands to display variables’ values. With some debuggers, you can
pause a run and change a variable’s value (just to see if things go better when you do).

An Eclipse perspective is a collection of views intended to help you with a certain aspect of program
development. By default, Eclipse starts in the Java perspective — the arrangement of views to help
you create Java programs. Another perspective — the Debug perspective — helps you diagnose
errors in your code.

In this book, I don’t promote the use of an automated debugger. But for any large programming
project, automated debugging is an essential tool. So if you plan to write bigger and better pro-
grams, please give Eclipse’s Debug perspective a try. For a small sample of the Debug perspective’s
capabilities, do the following:

 1 . In the editor (where you see your Java code) double-click in the margin to the left of a line of
code .

 A little blue dot appears in the margin (see the first figure below). This dot indicates a break-
point in the code. In the steps that follow, you’ll make the run of the program pause at this
breakpoint. In the figure, I click the last line of code from Listing 8-5.

 2 . In Eclipse’s main menu, click Window➪ Open Perspective➪Debug .

 As a result, Eclipse displays a new layout. The new layout contains some familiar views, such as
the Console view and the Outline view. The layout also contains some new views, such as the
Debug view, the Variables view, and the Breakpoints view (see this next figure).

 3 . In Eclipse’s main menu, click Run➪Debug As➪Java Application .

 Remember to select the Debug As menu item. Selecting this item enables all the debugging tools.

 Your code begins running. Because you’re working with the program in Listing 8-5, the code
prompts you to enter the Celsius temperature.

 4 . Type the number 21 and then press Enter .

 Your code continues running until execution reaches the breakpoint. At the breakpoint, the exe-
cution pauses to allow you to examine the program’s state.

171 Chapter 8: Numbers? Who Needs Numbers?

(continued)

172 Part II: Writing Your Own Java Programs

(continued)

Comparing characters
The comparison operators in Table 8-1 work overtime for characters. Roughly
speaking, the operator < means “comes earlier in the alphabet.” But you have
to be careful of the following:

 ✓ Because B comes alphabetically before H, the condition 'B' < 'H' is
true. That’s not surprising.

 ✓ Because b comes alphabetically before h, the condition 'b' < 'h' is
true. That’s no surprise, either.

 ✓ Every uppercase letter comes before any of the lowercase letters, so the
condition 'b' < 'H' is false. Now that’s a surprise (see Figure 8-14).

Figure 8-14:
The order-

ing of the
letters.

In practice, you seldom have reason to compare one letter with another. But
in Chapter 18, you can read about Java’s String type. With the String type,
you can compare words, names, and other good stuff. At that point, you have
to think carefully about alphabetical ordering, and the ideas in Figure 8-14
come in handy.

 5 . In the upper-right corner of Eclipse’s window, look for the Variables view .

 The Variables view displays the values of the program’s variables. (That’s not surprising.)
In this sidebar’s third figure, the fahrenheit variable’s value is 69.80000000000001. How
nice! Using the debugging tools, you can examine variables’ values in the middle of a run!

 6 . To finish running your program, click the Resume button at the top of the Debug view . (See
this sidebar’s final figure .)

 7 . To return to the Java perspective, click Window➪Open Perspective➪Java .

173 Chapter 8: Numbers? Who Needs Numbers?

(continued) Under the hood, the letters A through Z are stored with numeric codes 65
through 90. The letters a through z are stored with codes 97 through 122.
That’s why each uppercase letter is “less than” any of the lowercase letters.

The Remaining Primitive Types
In Chapter 7, I tell you that Java has eight primitive types, but Table 7-1 lists
only six out of eight types. Table 8-2 describes the remaining two types — the
types char and boolean. Table 8-2 isn’t too exciting, but I can’t just leave
you with the incomplete story in Table 7-1.

Table 8-2 Java’s Primitive Non-numeric Types
Type Name Range of Values
Character Type

char Thousands of characters, glyphs, and symbols

Logical Type

boolean Only true or false

 If you dissect parts of the Java Virtual Machine, you find that Java considers
char to be a numeric type. That’s because Java represents characters with
something called Unicode — an international standard for representing alpha-
bets of the world’s many languages. For example, the Unicode representation
of an uppercase letter C is 67. The representation of a Hebrew letter aleph is
1488. And (to take a more obscure example) the representation for the voiced
retroflex approximant in phonetics is 635. But don’t worry about all this. The
only reason I’m writing about the char type’s being numeric is to save face
among my techie friends.

 After looking at Table 8-2, you may be wondering what a glyph is. (In fact, I’m
proud to be writing about this esoteric concept, whether you have any use for
the information or not.) A glyph is a particular representation of a character.
For example, a and a are two different glyphs, but both of these glyphs rep-
resent the same lowercase letter of the Roman alphabet. (Because these two
glyphs have the same meaning, the glyphs are called allographs. If you want to
sound smart, find a way to inject the words glyph and allograph into a casual
conversation!)

174 Part II: Writing Your Own Java Programs

Part III
Controlling the Flow

 Check out the article “How to Squeeze Nanoseconds out of a Java Loop” (and more)
online at www.dummies.com/extras/beginningprogrammingwithjava

http://www.dummies.com/extras/beginningprogrammingwithjava

In this part . . .
 ✓ Making big decisions (or, more accurately, making not-so-big

decisions)

 ✓ Repeating yourself, repeating yourself, and repeating yourself
again

 ✓ Getting data from files on your computer’s hard drive

Chapter 9

Forks in the Road
In This Chapter
▶ Writing statements that choose between alternatives

▶ Putting statements inside one another

▶ Writing several kinds of decision-making statements

H
ere’s an excerpt from Beginning Programming with Java For Dummies,
4th Edition, Chapter 8:

If you’re trying to store words or sentences (not just single letters), then
you need to use something called a String.*

This excerpt illustrates two important points: First, you may have to use
something called a String. Second, your choice of action can depend on some-
thing being true or false.

If it’s true that you’re trying to store words or sentences,
you need to use something called a String.

This chapter deals with decision-making, which plays a fundamental role in
the creation of instructions. With the material in this chapter, you expand
your programming power by leaps and bounds.

Decisions, Decisions!
Picture yourself walking along a quiet country road. You’re enjoying a pleasant
summer day. It’s not too hot, and a gentle breeze from the north makes you feel
fresh and alert. You’re holding a copy of this book, opened to Chapter 9. You
read the paragraph about storing words or sentences, and then you look up.

* This excerpt is reprinted with permission from John Wiley & Sons, Inc. If you can’t find
a copy of Beginning Programming with Java For Dummies, 4th Edition in your local book-
store, visit http://www.wiley.com.

http://www.wiley.com

178 Part III: Controlling the Flow

You see a fork in the road. You see two signs — one pointing to the right; the
other pointing to the left. One sign reads, “Storing words or sentences? True.”
The other sign reads, “Storing words or sentences? False.” You evaluate the
words-or-sentences situation and march on, veering right or left depending
on your software situation. A diagram of this story is shown in Figure 9-1.

Figure 9-1:
Which way

to go?

Life is filled with forks in the road. Take an ordinary set of directions for heat-
ing up a frozen snack:

 ✓ Microwave cooking directions:

 Place on microwave-safe plate.

 Microwave on high for 2 minutes.

 Turn product.

 Microwave on high for 2 more minutes.

 ✓ Conventional oven directions:

 Preheat oven to 350 degrees.

 Place product on baking sheet.

 Bake for 25 minutes.

Again, you choose between alternatives. If you use a microwave oven, do
this. Otherwise, do that.

179 Chapter 9: Forks in the Road

In fact, it’s hard to imagine useful instructions that don’t involve choices. If
you’re a homeowner with two dependents earning more than $30,000 per
year, check here. If you don’t remember how to use curly braces in Java
programs, see Chapter 4. Did the user correctly type his password? If yes,
then let the user log in; if no, then kick the bum out. If you think the market
will go up, then buy stocks; otherwise, buy bonds. And if you buy stocks,
which should you buy? And when should you sell?

Making Decisions (Java if Statements)
When you work with computer programs, you make one decision after
another. Almost every programming language has a way of branching in
one of two directions. In Java (and in many other languages), the branching
feature is called an if statement. Check out Listing 9-1 to see an if statement.

Listing 9-1: An if Statement

if (randomNumber > 5) {
 System.out.println("Yes. Isn't it obvious?");
} else {
 System.out.println("No, and don't ask again.");
}

To see a complete program containing the code from Listing 9-1, skip to
Listing 9-2 (or, if you prefer, walk, jump, or run to Listing 9-2).

The if statement in Listing 9-1 represents a branch, a decision, two alter-
native courses of action. In plain English, this statement has the following
meaning:

If the randomNumber variable's value is greater than 5,
 display "Yes. Isn't it obvious?" on the screen.
Otherwise,
 display "No, and don't ask again." on the screen.

Pictorially, you get the fork shown in Figure 9-2.

Looking carefully at if statements
An if statement can take the following form:

if (Condition) {
 SomeStatements
} else {
 OtherStatements
}

180 Part III: Controlling the Flow

To get a real-life if statement, substitute meaningful text for the three place-
holders Condition, SomeStatements, and OtherStatements. Here’s how
I make the substitutions in Listing 9-1:

 ✓ I substitute randomNumber > 5 for Condition.

 ✓ I substitute System.out.println("Yes. Isn’t it obvious?");
for SomeStatements.

 ✓ I substitute System.out.println("No, and don’t ask again.");
for OtherStatements.

The substitutions are illustrated in Figure 9-3.

Figure 9-3:
An if

statement
and its
format.

Figure 9-2:
A random

number
decides

your fate.

181 Chapter 9: Forks in the Road

Sometimes I need alternate names for parts of an if statement. I call them
the if clause and the else clause.

if (Condition) {
 if clause
} else {
 else clause
}

An if statement is an example of a compound statement — a statement that
includes other statements within it. The if statement in Listing 9-1 includes
two println calls, and these calls to println are statements.

Notice how I use parentheses and semicolons in the if statement of
Listing 9-1. In particular, notice the following:

 ✓ The condition must be in parentheses.

 ✓ Statements inside the if clause end with semicolons. So do statements
inside the else clause.

 ✓ There’s no semicolon immediately after the condition.

 ✓ There’s no semicolon immediately after the word else.

As a beginning programmer, you may think these rules are arbitrary. But
they’re not. These rules belong to a very carefully crafted grammar. They’re
like the grammar rules for English sentences, but they’re even more logical!
(Sorry, Melba.)

Table 9-1 shows you the kinds of things that can go wrong when you break
the if statement’s punctuation rules. The table’s last two items are the
most notorious. In these two situations, the compiler doesn’t catch the
error. This lulls you into a false sense of security. The trouble is, when you
run the program, the code’s behavior isn’t what you expect it to be.

Table 9-1 Common if Statement Error Messages
Error Example Most Likely Messages or

Results
Missing
parentheses
surrounding
the condition

if randomNumber > 5 { ’(’expectedSyntax
error on token
"if", (expected
after this token

(continued)

182 Part III: Controlling the Flow

Error Example Most Likely Messages or
Results

Missing
semicolon
after a state-
ment that’s
inside the if
clause or the
else clause

if (randomNumber >
5) { System.out.
println("Y")}

’;’ expectedSyntax
error, insert
";" to complete
BlockStatements

Semicolon
immediately
after the
condition

if (randomNumber >
5); { System.out.
println("Y");} else {

’else’ without
’if’Syntax error
on token "else",
delete this token

Semicolon
immediately
after the
word else

} else; { The program compiles
without errors, but the
statement after the word
else is always executed,
whether the condition is
true or false.

Missing
curly braces

if (randomNumber
> 5) System.out.
println("Y");else
System.out.
println("N");

The program sometimes
compiles without errors,
but the program’s run may
not do what you expect it
to do. (So the bottom line
is, don’t omit the curly
braces.)

As you compose your code, it helps to think of an if statement as one indi-
visible unit. Instead of typing the whole first line (condition and all), try
typing the if statement’s skeletal outline.

if () { //To do: Fill in the condition.
 //To do: Fill in SomeStatements.
} else {
 //To do: Fill in OtherStatements.
}

With the entire outline in place, you can start working on the items on your
to-do list. When you apply this kind of thinking to a compound statement, it’s
harder to make a mistake.

Table 9-1 (continued)

183 Chapter 9: Forks in the Road

A complete program
Listing 9-2 contains a complete program with a simple if statement. The
listing’s code behaves like an electronic oracle. Ask the program a yes or no
question, and the program answers you back. Of course, the answer to your
question is randomly generated. But who cares? It’s fun to ask anyway.

Listing 9-2: I Know Everything

import java.util.Scanner;
import java.util.Random;

class AnswerYesOrNo {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 Random myRandom = new Random();
 int randomNumber;

 System.out.print("Type your question, my child: ");
 keyboard.nextLine();

 randomNumber = myRandom.nextInt(10) + 1;

 if (randomNumber > 5) {
 System.out.println("Yes. Isn't it obvious?");
 } else {
 System.out.println("No, and don't ask again.");
 }

 keyboard.close();
 }
}

Figure 9-4 shows several runs of the program in Listing 9-2. The program’s
action has four parts:

 1. Prompt the user.

 Call System.out.print, telling the user to type a question.

 2. Get the user’s question from the keyboard.

 In Figure 9-4, I run the AnswerYesOrNo program four times, and I type
a different question each time. Meanwhile, back in Listing 9-2, the
statement

keyboard.nextLine();

 swallows up my question and does absolutely nothing with it. This is an
anomaly, but you’re smart, so you can handle it.

184 Part III: Controlling the Flow

Figure 9-4:
The all-

knowing
Java pro-

gram in
action.

 Normally, when a program gets input from the keyboard, the program
does something with the input. For example, the program can assign the
input to a variable:

amount = keyboard.nextDouble();

 Alternatively, the program can display the input on the screen:

System.out.println(keyboard.nextLine());

 But the code in Listing 9-2 is different. When this AnswerYesOrNo
program runs, the user has to type something. (The call to getLine
waits for the user to type some stuff and then press Enter.) But the
AnswerYesOrNo program has no need to store the input for further
analysis. (The computer does what I do when my wife asks me if I plan
to clean up after myself. I ignore the question and make up an arbitrary
answer.) So the program doesn’t do anything with the user’s input. The
call to keyboard.nextLine just sits there in a statement of its own,
doing nothing, behaving like a big black hole. It’s unusual for a program
to do this, but an electronic oracle is an unusual thing. It calls for some
slightly unusual code.

 3. Get a random number — anyintvalue from 1 to 10.

 Okay, wise guys. You’ve just trashed the user’s input. How will you
answer yes or no to the user’s question?

185 Chapter 9: Forks in the Road

 No problem! None at all! You’ll display an answer randomly. The user
won’t know the difference. (Hah, hah!) You can do this as long as you can
generate random numbers. The numbers from 1 to 10 will do just fine.

 In Listing 9-2, the stuff about Random and myRandom looks very much like
the familiar Scanner code. From a beginning programmer’s point of view,
Random and Scanner work almost the same way. Of course, there’s an
important difference. A call to the Random class’s nextInt(10) method
doesn’t fetch anything from the keyboard. Instead, this nextInt(10)
method gets a number out of the blue.

 The name Random is defined in the Java API. The call to myRandom.
nextInt(10) in Listing 9-2 gets a number from 0 to 9. Then my code
adds 1 (making a number from 1 to 10) and assigns that number to the
variable randomNumber. When that’s done, you’re ready to answer the
user’s question.

 In Java’s API, the word Random is the name of a Java class, and nextInt
is the name of a Java method. For more information on the relationship
between classes and methods, see Chapters 17, 18, and 19.

 4. Answer yes or no.

 Calling myRandom.nextInt(10) is like spinning a wheel on a TV
game show. The wheel has slots numbered 1 to 10. The if statement in
Listing 9-2 turns your number into a yes or no alternative. If you roll a
number that’s greater than 5, the program answers yes. Otherwise (if you
roll a number that’s less than or equal to 5), the program answers no.

 You can trust me on this one. I’ve made lots of important decisions
based on my AnswerYesOrNo program.

Indenting if statements in your code
Notice how, in Listing 9-2, the println calls inside the if statement are
indented. Strictly speaking, you don’t have to indent the statements that are
inside an if statement. For all the compiler cares, you can write your whole
program on a single line or place all your statements in an artful, misshapen
zigzag. The problem is, if you don’t indent your statements in some logical
fashion, then neither you nor anyone else can make sense of your code. In
Listing 9-2, the indenting of the println calls helps your eyes (and brain) see
quickly that these statements are subordinate to the overall if/else flow.

In a small program, unindented or poorly indented code is barely tolerable.
But in a complicated program, indentation that doesn’t follow a neat, logical
pattern is a big, ugly nightmare.

 Always indent your code to make the program’s flow apparent at a glance.

186 Part III: Controlling the Flow

Randomness makes me dizzy
When you call myRandom.nextInt(10)
+ 1, you get a number from 1 to 10. As a test,
I wrote a program that calls the myRandom.
nextInt(10) + 1 20 times.

Random myRandom=new Random();
System.out.print
 (myRandom.nextInt(10) + 1);
System.out.print(" ");
System.out.print
 (myRandom.nextInt(10) + 1);
System.out.print(" ");
System.out.print
 (myRandom.nextInt(10) + 1);
//...And so on.

I ran the program several times and got the
results shown in the following figure. (Actually,
I copied the results from Eclipse’s Console view
to Windows Notepad.) Stare briefly at the figure
and notice two trends:

 ✓ There’s no obvious way to predict what
number comes next.

 ✓ No number occurs much more often than
any of the others.

The Java Virtual Machine jumps through hoops
to maintain these trends. That’s because crank-
ing out numbers in a random fashion is a very
tricky business. Here are some interesting facts
about the process:

 ✓ Scientists and nonscientists use the term
random number. But in reality, there’s no
such thing as a single random number.
After all, how random is a number like 9?

 A number is random only when it’s one in a
very disorderly collection of numbers. More

precisely, a number is random if the pro-
cess used to generate the number follows
the two preceding trends. When they’re
being careful, scientists avoid the term
random number and use the term randomly
generated number instead.

 ✓ It’s hard to generate numbers randomly.
Computer programs do the best they can,
but ultimately, today’s computer programs
follow a pattern, and that pattern isn’t truly
random.

 To generate numbers in a truly random fash-
ion, you need a big tub of ping-pong balls,
like the kind they use in state lottery draw-
ings. The problem is, most computers don’t
come with big tubs of ping-pong balls among
their peripherals. So strictly speaking, the
numbers generated by Java’s Random
class aren’t random. Instead, scientists call
these numbers pseudorandom.

 ✓ It surprises us all, but knowing one randomly
generated value is of no help in predicting
the next randomly generated value.

 For example, if you toss a coin twice, and
get heads each time, are you more likely to
get tails on the third flip? No. It’s still 50-50.

 If you have three sons, and you’re expect-
ing a fourth child, is the fourth child more
likely to be a girl? No. A child’s gender
has nothing to do with the genders of the
older children. (I’m ignoring any biological
effects, which I know absolutely nothing
about. Wait! I do know some biological
trivia: A newborn child is more likely to be a
boy than a girl. For every 21 newborn boys,
there are only 20 newborn girls. Boys are
weaker, so we die off faster. That’s why
nature makes more of us at birth.)

187 Chapter 9: Forks in the Road

 You don’t have to think about indenting your code because Eclipse can indent
your code automatically. For details, see Chapter 4.

Variations on the Theme
I don’t like to skin cats. But I’ve heard that, if I ever need to skin one, I have
a choice of several techniques. I’ll keep that in mind the next time my cat
Histamine mistakes the carpet for a litter box.*

Anyway, whether you’re skinning catfish, skinning kitties, or writing computer
programs, the same principle holds true. You always have alternatives. Listing 9-2
shows you one way to write an if statement. The rest of this chapter (and all of
Chapter 10) show you some other ways to create if statements.

 . . . Or else what?
You can create an if statement without an else clause. For example, imagine
a web page on which one in ten randomly chosen visitors receives a special
offer. To keep visitors guessing, I call the Random class’s nextInt method, and
make the offer to anyone whose number is lucky 7.

 ✓ If myRandom.nextInt(10) + 1 generates the number 7, display a
special offer message.

 ✓ If myRandom.nextInt(10) + 1 generates any number other than 7,
do nothing. Don’t display a special offer message and don’t display a
discouraging, “Sorry, no offer for you,” message.

* Rick Ross, who read about skinning cats in one of my other books, sent me this information via
e-mail: “ . . . you refer to ‘skinning the cat’ and go on to discuss litter boxes and whatnot. Please
note that the phrase ‘more than one way to skin a cat’ refers to the difficulty in removing the ined-
ible skin from catfish, and that there is more than one way to do same. These range from nailing
the critter’s tail to a board and taking a pair of pliers to peel it down, to letting the furry kind of
cat have the darn thing and just not worrying about it. I grew up on The River (the big one running
north/south down the US that begins with ‘M’ and has so many repeated letters), so it’s integral
to our experience there.” Another reader, Alan Wilson, added his two cents to this discussion: “. . .
the phrase ‘Skinning a Cat’ . . . actually has an older but equally interesting British Naval origin. It
refers to the activity of attaching the nine ropes to the whip used to punish recalcitrant sailors up
to a couple of hundred years ago. The ‘Cat ‘O Nine Tails’ was the name of the whip and there was
more than one way to attach the ropes or ‘skin’ the whip.” One way or another, it’s time for me to
apologize to my little house pet.

188 Part III: Controlling the Flow

The code to implement such a strategy is shown in Listing 9-3. A few runs of
the code are shown in Figure 9-5.

Figure 9-5:
Three runs
of the code

in Listing
9-3.

Listing 9-3: Aren’t You Lucky?

import java.util.Random;

class SpecialOffer {

 public static void main(String args[]) {
 Random myRandom = new Random();
 int randomNumber = myRandom.nextInt(10) + 1;

 if (randomNumber == 7) {
 System.out.println("An offer just for you!");
 }

 System.out.println(randomNumber);
 }
}

The if statement in Listing 9-3 has no else clause. This if statement has
the following form:

if (Condition) {
 SomeStatements
}

When randomNumber is 7, the computer displays An offer just for
you! When randomNumber isn’t 7, the computer doesn’t display An offer
just for you! The action is illustrated in Figure 9-6.

 Always (I mean always) use a double equal sign when you compare two
numbers or characters in an if statement’s condition. Never (that’s never,
ever, ever) use a single equal sign to compare two values. A single equal sign
does assignment, not comparison.

189 Chapter 9: Forks in the Road

In Listing 9-3, I took the liberty of adding an extra println. This println (at
the end of the main method) displays the random number generated by my
call to nextInt. On a web page with special offers, you probably wouldn’t
see the randomly generated number, but I can’t test my SpecialOffer code
without knowing what numbers the code generates.

Anyway, notice that the value of randomNumber is displayed in every
run. The println for randomNumber isn’t inside the if statement. (This
println comes after the if statement.) So the computer always executes
this println. Whether randomNumber == 7 is true or false, the computer
takes the appropriate if action, and then marches on to execute System.
out.println(randomNumber).

Packing more stuff into an if statement
Here’s an interesting situation: You have two baseball teams — the Hankees
and the Socks. You want to display the teams’ scores on two separate lines,
with the winner’s score coming first. (On the computer screen, the winner’s
score is displayed above the loser’s score. In case of a tie, you display the
two identical scores, one above the other.) Listing 9-4 has the code.

Listing 9-4: May the Best Team Be Displayed First

import java.util.Scanner;
import static java.lang.System.in;
import static java.lang.System.out;

class TwoTeams {

 public static void main(String args[]) {

Figure 9-6:
If you have

nothing
good to

say, then
don’t say
anything.

(continued)

190 Part III: Controlling the Flow

 Scanner keyboard = new Scanner(in);
 int hankees, socks;

 out.print("Hankees and Socks scores? ");
 hankees = keyboard.nextInt();
 socks = keyboard.nextInt();
 out.println();

 if (hankees > socks) {
 out.print("Hankees: ");
 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
 } else {
 out.print("Socks: ");
 out.println(socks);
 out.print("Hankees: ");
 out.println(hankees);
 }

 keyboard.close();
 }
}

Figure 9-7 has a few runs of the code. (To show a few runs in one figure,
I copied the results from Eclipse’s Console view to Windows Notepad.)

With curly braces, a bunch of print and println calls are tucked away safely
inside the if clause. Another group of print and println calls are squished
inside the else clause. This creates the forking situation shown in Figure 9-8.

Figure 9-7:
See? The

code in
Listing

9-4 really
works!

Listing 9-4 (continued)

191 Chapter 9: Forks in the Road

Figure 9-8:
Cheer for

your favorite
team.

Statements and blocks
An elegant way to think about if statements is
to realize that you can put only one statement
inside each clause of an if statement.

if (Condition)
 aStatement
else
 anotherStatement

On your first reading of this one-statement rule,
you’re probably thinking that there’s a misprint.
After all, in Listing 9-4, each clause (the if
clause and the else clause) seems to contain
four statements, not just one.

But technically, the if clause in Listing 9-4
has only one statement, and the else clause
in Listing 9-4 has only one statement. The
trick is, when you surround a bunch of state-
ments with curly braces, you get what’s called
a block, and a block behaves, in all respects,
like a single statement. In fact, the official

Java documentation lists a block as a kind of
statement (one of many different kinds of state-
ments). So in Listing 9-4, the block

{
 out.print("Hankees: ");
 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
}

is a single statement. It’s a statement that has
four smaller statements within it. So this big
block, this single statement, serves as the one
and only statement inside the if clause in
Listing 9-4.

That’s how the one-statement rule works. In an
if statement, when you want the computer to
execute several statements, you combine those
statements into one big statement. To do this,
you make a block using curly braces.

192 Part III: Controlling the Flow

Some handy import declarations
When I wrote this section’s example, I was tired of writing the word System.
After all, Listing 9-4 has ten System.out.print lines. By this point in the
book, shouldn’t my computer remember what out.print means?

Of course, computers don’t work that way. If you want a computer to “know”
what out.print means, you have to code that knowledge somewhere inside
the Java compiler.

Fortunately for me, the ability to abbreviate things like System.out.print
is available from Java 5.0 onward. (An older Java compiler just chokes on the
code in Listing 9-4.) This ability to abbreviate things is called static import. It’s
illustrated in the second and third lines of Listing 9-4.

Whenever I start a program with the line

import static java.lang.System.out;

I can replace System.out with plain out in the remainder of the program.
The same holds true of System.in. With an import declaration near the top
of Listing 9-4, I can replace new Scanner(System.in) with the simpler new
Scanner(in).

You may be wondering what all the fuss is about. If I can abbreviate java.
util.Scanner by writing Scanner, what’s so special about abbreviating
System.out? And why do I have to write out.print? Can I trim System.
out.print down to the single word print? Look again at the first few lines
of Listing 9-4. When do you need the word static? And what’s the difference
between java.util and java.lang?

I’m sorry. My response to these questions won’t thrill you. The fact is, I can’t
explain away any of these issues until Chapter 18. Before I can explain static
import declarations, I need to introduce some ideas. I need to describe classes,
packages, and static members.

So until you reach Chapter 18, please bear with me. Just paste three import
declarations to the top of your Java programs and trust that everything will
work well.

 You can abbreviate System.out with the single word out. And you can
abbreviate System.in with the single word in. Just be sure to copy the
import declarations exactly as you see them in Listing 9-4. With any deviation
from the lines in Listing 9-4, you may get a compiler error.

Chapter 10

Which Way Did He Go?
In This Chapter
▶ Untangling complicated conditions

▶ Writing cool conditional code

▶ Intertwining your if statements

I
t’s tax time again. At the moment, I’m working on Form 12432-89B. Here’s
what it says:

If you’re married with fewer than three children, and your income is
higher than the EIQ (Estimated Income Quota), or if you’re single and
living in a non-residential area (as defined by Section 10, Part iii of the
Uniform Zoning Act), and you’re either self-employed as an LLC (Limited
Liability Company) or you qualify for veterans benefits, then skip Steps 3
and 4 or 4, 5, and 6, depending on your answers to Questions 2a and 3d.

No wonder I have no time to write! I’m too busy interpreting these tax forms.

Anyway, this chapter deals with the potential complexity of if statements.
This chapter has nothing as complex as Form 12432-89B, but if you ever
encounter something that complicated, you’ll be ready for it.

Forming Bigger and Better Conditions
In Listing 9-2 (refer to Chapter 9), the code chooses a course of action based
on one call to the Random class’s nextInt method. That’s fine for the elec-
tronic oracle program described in Chapter 9, but what if you’re rolling a pair
of dice? In Backgammon and other dice games, rolling 3 and 5 isn’t the same
as rolling 4 and 4, even though the total for both rolls is 8. The next move
varies, depending on whether you roll doubles. To get the computer to roll
two dice, you execute myRandom.nextInt(6) + 1 two times. Then you
combine the two rolls into a larger, more complicated if statement.

194 Part III: Controlling the Flow

So to simulate a Backgammon game (and many other, more practical situa-
tions) you need to combine conditions.

If die1 + die2 equals 8 and die1 equals die2, ...

You need things like and and or — things that can wire conditions together.
Java has operators to represent these concepts, which are described in
Table 10-1 and illustrated in Figure 10-1.

Table 10-1 Logical Operators
Operator Symbol Meaning Example Illustration
&& and 4 < age && age < 8 Figure 10-1(a)

|| or age < 4 || 8 < age Figure 10-1(b)

! not !eachKidGetsTen Figure 10-1(c)

Figure 10-1:
When you

satisfy a
condition,

you’re
happy.

Combined conditions, like the ones in Table 10-1, can be mighty confusing.
That’s why I tread carefully when I use such things. Here’s a short explana-
tion of each example in the table:

 ✓ 4 < age && age < 8

 The value of the age variable is greater than 4 and is less than 8. The
numbers 5, 6, 7, 8, 9 . . . are all greater than 4. But among these numbers,
only 5, 6, and 7 are less than 8. So only the numbers 5, 6, and 7 satisfy
this combined condition.

195 Chapter 10: Which Way Did He Go?

 ✓ age < 4 || 8 < age

 The value of the age variable is less than 4 or is greater than 8. To create
the or condition, you use two pipe symbols. On many U.S. English key-
boards, you can find the pipe symbol immediately above the Enter key
(the same key as the backslash, but shifted).

 In this combined condition, the value of the age variable is either less
than 4 or greater than 8. For example, if a number is less than 4, the number
satisfies the condition. Numbers like 1, 2, and 3 are all less than 4, so these
numbers satisfy the combined condition.

 Also, if a number is greater than 8, the number satisfies the combined
condition. Numbers like 9, 10, and 11 are all greater than 8, so these
numbers satisfy the condition.

 ✓ !eachKidGetsTen

 If I weren’t experienced with computer programming languages, I’d be
confused by the exclamation point. I’d think that !eachKidGetsTen
means, “Yes, each kid does get ten.” But that’s not what this expression
means. This expression says, “The variable eachKidGetsTen does not
have the value true.” In Java and other programming languages, an
exclamation point stands for negative, for no way, for not.

 Listing 8-4 (refer to Chapter 8) has a boolean variable named eachKid
GetsTen. A boolean variable’s value is either true or false. Because !
means not, the expressions eachKidGetsTen and !eachKidGetsTen
have opposite values. So when eachKidGetsTen is true, !eachKid
GetsTen is false (and vice versa).

 Java’s || operator is inclusive. This means that you get true whenever the
thing on the left side is true, the thing on the right side is true, or both
things are true. For example, the condition 2 < 10 || 20 < 30 is true.

 In Java, you can’t combine comparisons the way you do in ordinary English.
In English, you may say, “We’ll have between three and ten people at the
dinner table.” But in Java, you get an error message if you write 3 <= people
<= 10. To do this comparison, you need to something like 3 <= people &&
people <= 10.

Combining conditions: An example
Here’s a handy example of the use of logical operators. A movie theater posts
its prices for admission.

Regular price: $9.25

Kids under 12: $5.25

Seniors (65 and older): $5.25

196 Part III: Controlling the Flow

Because the kids and seniors’ prices are the same, you can combine these
prices into one category. (That’s not always the best programming strategy,
but do it anyway for this example.) To find a particular moviegoer’s ticket
price, you need one or more if statements. You can structure the conditions
in many ways, and I chose one of these ways for the code in Listing 10-1.

Listing 10-1: Are You Paying Too Much?

import java.util.Scanner;

class TicketPrice {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int age;
 double price = 0.00;

 System.out.print("How old are you? ");
 age = keyboard.nextInt();

 if (age >= 12 && age < 65) {
 price = 9.25;
 }
 if (age < 12 || age >= 65) {
 price = 5.25;
 }

 System.out.print("Please pay $");
 System.out.print(price);
 System.out.print(". ");
 System.out.println("Enjoy the show!");

 keyboard.close();
 }
}

Several runs of the TicketPrice program (refer to Listing 10-1) are shown
in Figure 10-2. (For your viewing pleasure, I’ve copied the runs from Eclipse’s
Console view to Windows Notepad.) When you turn 12, you start paying full
price. You keep paying the full price until you become 65. At that point, you
pay the reduced price again.

The pivotal part of Listing 10-1 is the lump of if statements in the middle,
which are illustrated in Figure 10-3.

197 Chapter 10: Which Way Did He Go?

Figure 10-2:
Admission
prices for

Beginning
Program-
ming with
Java For

Dummies:
The Movie.

Figure 10-3:
The mean-
ings of the
conditions

in Listing
10-1.

 ✓ The first if statement’s condition tests for the regular price group.
Anyone who’s at least 12 years of age and is under 65 belongs in this
group.

 ✓ The second if statement’s condition tests for the fringe ages. A person
who’s under 12 or is 65 or older belongs in this category.

 When you form the opposite of an existing condition, you can often follow the
pattern in Listing 10-1. The opposite of >= is <. The opposite of < is >=. The
opposite of && is ||.

 If you change the dollar amounts in Listing 10-1, you can get into trouble. For
example, with the statement price = 5.00, the program displays Please
pay $5.0. Enjoy the show! This happens because Java doesn’t store
the two zeros to the right of the decimal point (and Java doesn’t know or care
that 5.00 is a dollar amount). To fix this kind of thing, see the discussion of
NumberFormat.getCurrencyInstance in Chapter 18.

198 Part III: Controlling the Flow

When to initialize?
Take a look at Listing 10-1 and notice the price variable’s initialization:

double price = 0.00;

This line declares the price variable and sets the variable’s starting value
to 0.00. When I omit this initialization, I get an error message:

The local variable price may not have been initialized

What’s the deal here? I don’t initialize the age variable, but the compiler
doesn’t complain about that. Why is the compiler fussing over the price
variable?

The answer is in the placement of the code’s assignment statements. Consider
the following two facts:

 ✓ The statement that assigns a value to age (age = keyboard.
nextInt()) isn’t inside an if statement.

 That assignment statement always gets executed, and (as long as noth-
ing extraordinary happens) the variable age is sure to be assigned a
value.

 ✓ Both statements that assign a value to price (price = 9.25 and
price = 5.25) are inside if statements.

 If you look at Figure 10-3, you see that every age group is covered. No
one shows up at the ticket counter with an age that forces both if con-
ditions to be false. So, whenever you run the TicketPrice program,
either the first or the second price assignment is executed.

 The problem is that the compiler isn’t smart enough to check all this.
The compiler just sees the structure in Figure 10-4 and becomes scared
that the computer won’t take either of the true detours.

 If (for some unforeseen reason) both of the if statements’ conditions
are false, then the variable price isn’t assigned a value. So without an
initialization, price has no value. (More precisely, price has no value
that’s intentionally given to it in the code.)

 Eventually, the computer reaches the System.out.print(price)
statement. It can’t display price unless price has a meaningful value.
So at that point, the compiler throws up its virtual hands in disgust.

199 Chapter 10: Which Way Did He Go?

Figure 10-4:
The choices

in Listing
10-1.

More and more conditions
Last night I had a delicious meal at the neighborhood burger joint. As part
of a promotion, I got a discount coupon along with the meal. The coupon is
good for $2.00 off the price of a ticket at the local movie theater.

To make use of the coupon in the TicketPrice program, I have to tweak the
code in Listing 10-1. The revised code is in Listing 10-2. In Figure 10-5, I take
that new code around the block a few times.

200 Part III: Controlling the Flow

Figure 10-5:
Running

the code in
Listing 10-2.

Listing 10-2: Do You Have a Coupon?

import java.util.Scanner;

class TicketPriceWithDiscount {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int age;
 double price = 0.00;
 char reply;

 System.out.print("How old are you? ");
 age = keyboard.nextInt();

 System.out.print("Have a coupon? (Y/N) ");
 reply = keyboard.findWithinHorizon(".", 0)
 .charAt(0);

 if (age >= 12 && age < 65) {
 price = 9.25;
 }
 if (age < 12 || age >= 65) {
 price = 5.25;
 }

 if (reply == 'Y' || reply == 'y') {
 price -= 2.00;
 }
 if (reply != 'Y' && reply != 'y' &&
 reply!='N' && reply!='n') {
 System.out.println("Huh?");
 }

201 Chapter 10: Which Way Did He Go?

 System.out.print("Please pay $");
 System.out.print(price);
 System.out.print(". ");
 System.out.println("Enjoy the show!");

 keyboard.close();
 }
}

Listing 10-2 has two if statements whose conditions involve characters:

 ✓ In the first such statement, the computer checks to see whether the
reply variable stores the letter Y or the letter y. If either is the case, it
subtracts 2.00 from the price. (For information on operators like -=,
see Chapter 7.)

 ✓ The second such statement has a hefty condition. The condition tests to
see whether the reply variable stores any reasonable value at all. If the
reply isn’t Y, and isn’t y, and isn’t N, and isn’t n, the computer expresses
its concern by displaying, "Huh?" (As a paying customer, the word
“Huh?” on the automated ticket teller’s screen will certainly get your
attention.)

 When you create a big multipart condition, you always have several ways to
think about the condition. For example, you can rewrite the last condition in
Listing 10-2 as if (!(reply == 'Y' || reply == 'y' || reply ==
'N' || reply == 'n')). “If it’s not the case that the reply is either Y,
y, N, or n, then display ‘Huh?’” So which way of writing the condition is
better — the way I do it in Listing 10-2, or the way I do it in this tip? It depends
on your taste. Whichever makes the logic easier for you to understand is the
better way.

Using boolean variables
No matter how good a program is, you can always make it a little bit better.
Take the code in Listing 10-2. Does the forest of if statements make you ner-
vous? Do you slow to a crawl when you read each condition? Wouldn’t it be
nice if you could glance at a condition and make sense of it very quickly?

To some extent, you can. If you’re willing to create some additional variables,
you can make your code easier to read. Listing 10-3 shows you how.

202 Part III: Controlling the Flow

Listing 10-3: George Boole Would Be Proud

import java.util.Scanner;

class NicePrice {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int age;
 double price = 0.00;
 char reply;
 boolean isKid, isSenior, hasCoupon, hasNoCoupon;

 System.out.print("How old are you? ");
 age = keyboard.nextInt();

 System.out.print("Have a coupon? (Y/N) ");
 reply = keyboard.findWithinHorizon(".", 0)
 .charAt(0);

 isKid = age < 12;
 isSenior = age >= 65;
 hasCoupon = reply == 'Y' || reply == 'y';
 hasNoCoupon = reply == 'N' || reply == 'n';

 if (!isKid && !isSenior) {
 price = 9.25;
 }
 if (isKid || isSenior) {
 price = 5.25;
 }

 if (hasCoupon) {
 price -= 2.00;
 }
 if (!hasCoupon && !hasNoCoupon) {
 System.out.println("Huh?");
 }

 System.out.print("Please pay $");
 System.out.print(price);
 System.out.print(". ");
 System.out.println("Enjoy the show!");

 keyboard.close();
 }
}

203 Chapter 10: Which Way Did He Go?

Runs of the Listing 10-3 code look like the stuff in Figure 10-5. The only dif-
ference between Listings 10-2 and 10-3 is the use of boolean variables. In
Listing 10-3, you get past all the less-than signs and double equal signs before
the start of any if statements. By the time you encounter the two if state-
ments, the conditions can use simple words — words like isKid, isSenior,
and hasCoupon. With all these boolean variables, expressing each if state-
ment’s condition is a snap. You can read more about boolean variables in
Chapter 8.

Adding a boolean variable can make your code more manageable. But some
programming languages don’t have boolean variables, so many program-
mers prefer to create if conditions on the fly. That’s why I mix the two tech-
niques (conditions with and without boolean variables) in this book.

Mixing different logical operators together
If you read about Listing 10-2, you know that my local movie theater offers
discount coupons. The trouble is, I can’t use a coupon along with any other
discount. I tried to convince the ticket taker that I’m under 12 years of age,
but he didn’t buy it. When that didn’t work, I tried combining the coupon
with the senior citizen discount. That didn’t work, either.

The theater must use some software that checks for people like me. It looks
something like the code in Listing 10-4. To watch the code run, take a look at
Figure 10-6.

Figure 10-6:
Running

the code in
Listing 10-4.

204 Part III: Controlling the Flow

Listing 10-4: No Extra Break for Kids or Seniors

import java.util.Scanner;

class CheckAgeForDiscount {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int age;
 double price = 0.00;
 char reply;

 System.out.print("How old are you? ");
 age = keyboard.nextInt();

 System.out.print("Have a coupon? (Y/N) ");
 reply = keyboard.findWithinHorizon(".", 0)
 .charAt(0);

 if (age >= 12 && age < 65) {
 price = 9.25;
 }
 if (age < 12 || age >= 65) {
 price = 5.25;
 }

 if ((reply == 'Y' || reply == 'y') &&
 (age >= 12 && age < 65)) {
 price -= 2.00;
 }

 System.out.print("Please pay $");
 System.out.print(price);
 System.out.print(". ");
 System.out.println("Enjoy the show!");

 keyboard.close();
 }
}

Listing 10-4 is a lot like its predecessors, Listings 10-1 and 10-2. The big dif-
ference is the bolded if statement. This if statement tests two things, and
each thing has two parts of its own:

 ✓ Does the customer have a coupon?

 That is, did the customer reply with either Y or y?

 ✓ Is the customer in the regular age group?

 That is, is the customer at least 12 years old and younger than 65?

205 Chapter 10: Which Way Did He Go?

In Listing 10-4, I join items 1 and 2 using the && operator. I do this because both
items (item 1 and item 2) must be true in order for the customer to qualify for
the $2.00 discount, as illustrated in Figure 10-7.

Figure 10-7:
Both the

reply and
the age

criteria must
be true.

Using parentheses
Listing 10-4 demonstrates something important about conditions. Sometimes,
you need parentheses to make a condition work correctly. Take, for example,
the following incorrect if statement:

//This code is incorrect:
if (reply == 'Y' || reply == 'y' &&
 age >= 12 && age < 65) {
 price -= 2.00;
}

Compare this code with the correct code in Listing 10-4. This incorrect code
has no parentheses to group reply == 'Y' with reply == 'y', or to group
age >= 12 with age < 65. The result is the bizarre pair of runs in Figure 10-8.

Figure 10-8:
A capital
offense.

206 Part III: Controlling the Flow

In Figure 10-8, notice that the y and Y inputs yield different ticket prices, even
though the age is 85 in both runs. This happens because, without parentheses,
any && operator gets evaluated before any || operator. (That’s the rule in the
Java programming language — evaluate && before ||.) When reply is Y, the
condition in the bad if statement takes the following form:

reply == 'Y' || some-other-stuff-that-doesn_t-matter

Whenever reply == 'Y' is true, the whole condition is automatically
true, as illustrated in Figure 10-9.

Figure 10-9:
“True or

false”
makes
“true.”

Building a Nest
The year is 1968, and The Prisoner is on TV. In the last episode, the show’s
hero meets his nemesis, “Number One.” At first, Number One wears a spooky
happy-face/sad-face mask, and when the mask comes off, there’s a monkey
mask underneath. To find out what’s behind the monkey mask, you have to
watch the series on DVD. But in the meantime, notice the layering: a mask
within a mask. You can do the same kind of thing with if statements. This
section’s example shows you how.

207 Chapter 10: Which Way Did He Go?

But first, take a look at Listing 10-4. In that code, the condition age >= 12 &&
age < 65 is tested twice. Both times, the computer sends the numbers 12, 65,
and the age value through its jumble of circuits; and both times, the computer
gets the same answer. This is wasteful, but waste isn’t your only concern.

What if you decide to change the age limit for senior tickets? From now on, no
one under 100 gets a senior discount. You fish through the code and see the first
age >= 12 && age < 65 test. You change 65 to 100, pat yourself on the back,
and go home. The problem is, you’ve changed one of the two age >= 12 &&
age < 65 tests, but you haven’t changed the other. Wouldn’t it be better to
keep all the age >= 12 && age < 65 testing in just one place?

Listing 10-5 comes to the rescue. In Listing 10-5, I smoosh all my if statements
together into one big glob. The code is dense, but it gets the job done nicely.

Listing 10-5: Nested if Statements

import java.util.Scanner;

class AnotherAgeCheck {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int age;
 double price = 0.00;
 char reply;

 System.out.print("How old are you? ");
 age = keyboard.nextInt();

 System.out.print("Have a coupon? (Y/N) ");
 reply = keyboard.findWithinHorizon(".",

0).charAt(0);

 if (age >= 12 && age < 65) {
 price = 9.25;
 if (reply == 'Y' || reply == 'y') {
 price -= 2.00;
 }
 } else {
 price = 5.25;
 }

 System.out.print("Please pay $");
 System.out.print(price);
 System.out.print(". ");
 System.out.println("Enjoy the show!");

 keyboard.close();
 }
}

208 Part III: Controlling the Flow

Nested if statements
A run of the code in Listing 10-5 looks identical to a run for Listing 10-4. You
can see several runs in Figure 10-6. The main idea in Listing 10-5 is to put an
if statement inside another if statement. After all, Chapter 9 says that an
if statement can take the following form:

if (Condition) {
 SomeStatements
} else {
 OtherStatements
}

Who says SomeStatements can’t contain an if statement? For that matter,
OtherStatements can also contain an if statement. And, yes, you can create
an if statement within an if statement within an if statement. There’s no
predefined limit on the number of if statements that you can have.

if (age >= 12 && age < 65) {
 price = 9.25;
 if (reply == 'Y' || reply == 'y') {
 if (isSpecialFeature) {
 price -= 1.00;
 } else {
 price -= 2.00;
 }
 }
} else {
 price = 5.25;
}

When you put one if statement inside another, you create nested if state-
ments. Nested statements aren’t difficult to write, as long as you take things
slowly and keep a clear picture of the code’s flow in your mind. If it helps, draw
yourself a diagram like the one shown in Figure 10-10.

When you nest statements, you must be compulsive about the use of indenta-
tion and braces. (See Figure 10-11.) When code has misleading indentation, no
one (not even the programmer who wrote the code) can figure out how the
code works. A nested statement with sloppy indentation is a programmer’s
nightmare.

209 Chapter 10: Which Way Did He Go?

Figure 10-10:
The flow in

Listing 10-5.

Figure 10-11:
Be care-
ful about

adding
the proper

indentation
and braces.

Cascading if statements
Here’s a riddle: You have two baseball teams — the Hankees and the Socks.
You want to display the teams’ scores on two separate lines, with the win-
ner’s score coming first. (On the computer screen, the winner’s score is dis-
played above the loser’s score.) What happens when the scores are tied?

Do you give up? The answer is, there’s no right answer. What happens
depends on the way you write the program. Take a look back at Listing 9-4 in
Chapter 9. When the scores are equal, the condition hankees > socks is
false. So the program’s flow of execution drops down to the else clause.
That clause displays the Socks score first and the Hankees score second.
(Refer to Figure 9-7 in Chapter 9.)

210 Part III: Controlling the Flow

The program doesn’t have to work this way. If I take Listing 9-4 and change
hankees > socks to hankees >= socks then, in case of a tie, the
Hankees score comes first.

Suppose that you want a bit more control. When the scores are equal, you
want an It's a tie message. To do this, think in terms of a three-pronged
fork. You have a prong for a Hankees win, another prong for a Socks win, and
a third prong for a tie. You can write this code in several different ways, but
one way that makes lots of sense is in Listing 10-6. For three runs of the code
in Listing 10-6, see Figure 10-12.

Listing 10-6: In Case of a Tie . . .

import java.util.Scanner;
import static java.lang.System.out;

class WinLoseOrTie {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int hankees, socks;

 out.print("Hankees and Socks scores? ");
 hankees = keyboard.nextInt();
 socks = keyboard.nextInt();
 out.println();

 if (hankees > socks) {
 out.println("Hankees win...");
 out.print("Hankees: ");
 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
 } else if (socks > hankees) {
 out.println("Socks win...");
 out.print("Socks: ");
 out.println(socks);
 out.print("Hankees: ");
 out.println(hankees);
 } else {
 out.println("It's a tie...");
 out.print("Hankees: ");
 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
 }

 keyboard.close();
 }
}

211 Chapter 10: Which Way Did He Go?

Figure 10-12:
Go, team,

go!

Listing 10-6 illustrates a way of thinking about a problem. You have one ques-
tion with more than two answers. (In this section’s baseball problem, the ques-
tion is “Who wins?” and the answers are “Hankees,” “Socks,” or “Neither.”)
The problem begs for an if statement, but an if statement has only two
branches — the true branch and the false branch. So you combine alterna-
tives to form cascading if statements.

In Listing 10-6, the format for the cascading if statements is

if (Condition1) {
 SomeStatements
} else if (Condition2) {
 OtherStatements
} else {
 EvenMoreStatements
}

In general, you can use else if as many times as you want:

if (hankeesWin) {
 out.println("Hankees win...");
 out.print("Hankees: ");
 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
} else if (socksWin) {
 out.println("Socks win...");
 out.print("Socks: ");
 out.println(socks);
 out.print("Hankees: ");
 out.println(hankees);
} else if (isATie) {
 out.println("It's a tie...");
 out.print("Hankees: ");

212 Part III: Controlling the Flow

 out.println(hankees);
 out.print("Socks: ");
 out.println(socks);
} else if (gameCancelled) {
 out.println("Sorry, sports fans.");
} else {
 out.println("The game isn't over yet.");
}

Nothing is special about cascading if statements. This isn’t a new program-
ming language feature. Cascading if statements take advantage of a loophole
in Java — a loophole about omitting curly braces in certain circumstances.
Other than that, cascading if statements just gives you a new way to think
about decisions within your code.

Note: Listing 10-6 uses a static import declaration to avoid needless repeti-
tion of the words System.out. To read a little bit about the static import
declaration (along with an apology for my not explaining this concept more
thoroughly), see Chapter 9. Then to get the real story on static import decla-
rations, see Chapter 18.

Enumerating the Possibilities
Chapter 8 describes Java’s boolean type — the type with only two values
(true and false). The boolean type is very handy, but sometimes you need
more values. After all, a traffic light’s values can be green, yellow, or red. A
playing card’s suit can be spade, club, heart, or diamond. And a weekday
can be Monday, Tuesday, Wednesday, Thursday, or Friday.

Life is filled with small sets of possibilities, and Java has a feature that can
reflect these possibilities. The feature is called an enum type. It’s available
from Java version 5.0 onward.

Creating an enum type
The story in Listing 10-6 has three possible endings — the Hankees win, the
Socks win, or the game is tied. You can represent the possibilities with the fol-
lowing line of Java code:

enum WhoWins {home, visitor, neither}

This week’s game is played at Hankeeville’s SnitSoft Stadium, so the value home
represents a win for the Hankees, and the value visitor represents a win for
the Socks.

213 Chapter 10: Which Way Did He Go?

One of the goals in computer programming is for each program’s structure to
mirror whatever problem the program solves. When a program reminds you of
its underlying problem, the program is easy to understand and inexpensive to
maintain. For example, a program to tabulate customer accounts should use
names like customer and account. And a program that deals with three pos-
sible outcomes (home wins, visitor wins, and tie) should have a variable with
three possible values. The line enum WhoWins {home, visitor, neither}
creates a type to store three values.

The WhoWins type is called an enum type. Think of the new WhoWins type as a
boolean on steroids. Instead of two values (true and false), the WhoWins
type has three values (home, visitor, and neither). You can create a vari-
able of type WhoWins

WhoWins who;

and then assign a value to the new variable.

who = WhoWins.home;

In the next section, I put the WhoWins type to good use.

Using an enum type
Listing 10-7 shows you how to use the brand new WhoWins type.

Listing 10-7: Proud Winners and Sore Losers

import java.util.Scanner;
import static java.lang.System.out;

class Scoreboard {

 enum WhoWins {home, visitor, neither}

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int hankees, socks;
 WhoWins who;

 out.print("Hankees and Socks scores? ");
 hankees = keyboard.nextInt();
 socks = keyboard.nextInt();
 out.println();

(continued)

214 Part III: Controlling the Flow

 if (hankees > socks) {
 who = WhoWins.home;
 out.println("The Hankees win :-)");
 } else if (socks > hankees) {
 who = WhoWins.visitor;
 out.println("The Socks win :-(");
 } else {
 who = WhoWins.neither;
 out.println("It's a tie :-|");
 }

 out.println();
 out.println("Today's game is brought to you by");
 out.println("SnitSoft, the number one software");
 out.println("vendor in the Hankeeville area.");
 out.println("SnitSoft is featured proudly in");
 out.println("Chapter 6. And remember, four out");
 out.println("of five doctors recommend");
 out.println("SnitSoft to their patients.");
 out.println();

 if (who == WhoWins.home) {
 out.println("We beat 'em good. Didn't we?");
 }

 if (who == WhoWins.visitor) {
 out.println("The umpire made an unfair");
 out.println("call.");
 }

 if (who == WhoWins.neither) {
 out.println("The game goes into overtime.");
 }

 keyboard.close();
 }
}

Three runs of the program in Listing 10-7 are pictured in Figure 10-13.

Listing 10-7 (continued)

215 Chapter 10: Which Way Did He Go?

Figure 10-13:
Joy in

Hankeeville?

Here’s what happens in Listing 10-7:

 ✓ I create a variable to store values of type WhoWins.

 Just as the line

double amount;

 declares amount to store double values (values like 5.95 and 30.95), the
line

WhoWins who;

 declares who to store WhoWins values (values like home, visitor, and
neither).

 ✓ I assign a value to the who variable.

 I execute one of the

who = WhoWins.something;

216 Part III: Controlling the Flow

 assignment statements. The statement that I execute depends on the
outcome of the if statement’s hankees > socks comparison.

 Notice that I refer to each of the WhoWins values in Listing 10-7. I write
WhoWins.home, WhoWins.visitor, or WhoWins.neither. If I forget
the WhoWins prefix and type

who = home; //This assignment doesn't work!

 the compiler gives me a home cannot be resolved to a variable
error message. That’s just the way enum types work.

 ✓ I compare the variable’s value with each of the WhoWins values.

 In one if statement, I check the who == WhoWins.home condition. In
the remaining two if statements, I check for the other WhoWins values.

Near the end of Listing 10-7, I could have done without enum values. I could
have tested things like hankees > socks a second time.

if (hankees > socks) {
 out.println("The Hankees win :-)");
}

// And later in the program...

if (hankees > socks) {
 out.println("We beat 'em good. Didn't we?");
}

But that tactic would be clumsy. In a more complicated program, I may end
up checking hankees > socks a dozen times. It would be like asking the
same question over and over again.

Instead of repeatedly checking the hankees > socks condition, I store
the game’s outcome as an enum value. Then I check the enum value as
many times as I want. That’s a very tidy way to solve the repeated checking
problem.

Chapter 11

How to Flick a Virtual Switch
In This Chapter
▶ Dealing with many alternatives

▶ Jumping out from the middle of a statement

▶ Handling alternative assignments

I
magine playing Let’s Make a Deal with ten different doors. “Choose door
number 1, door number 2, door number 3, door number 4 Wait! Let’s

break for a commercial. When we come back, I’ll say the names of the other
six doors.”

What Monty Hall needs is Java’s switch statement.

Meet the switch Statement
The code in Listing 9-2 in Chapter 9 simulates a fortune-telling toy — an
electronic oracle. Ask the program a question, and the program randomly
generates a yes or no answer. But, as toys go, the code in Listing 9-2 isn’t
much fun. The code has only two possible answers. There’s no variety. Even
the earliest talking dolls could say about ten different sentences.

Suppose that you want to enhance the code of Listing 9-2. The call to
myRandom.nextInt(10) + 1 generates numbers from 1 to 10. So maybe
you can display a different sentence for each of the ten numbers. A big pile
of if statements should do the trick:

if (randomNumber == 1) {
 System.out.println("Yes. Isn't it obvious?");
}
if (randomNumber == 2) {
 System.out.println("No, and don't ask again.");
}
if (randomNumber == 3) {
 System.out.print("Yessir, yessir!");
 System.out.println(" Three bags full.");
}

218 Part III: Controlling the Flow

if (randomNumber == 4)
 .
 .
 .
if (randomNumber < 1 || randomNumber > 10) {
 System.out.print("Sorry, the electronic oracle");
 System.out.println(" is closed for repairs.");
}

But that approach seems wasteful. Why not create a statement that checks
the value of randomNumber just once and then takes an action based on the
value that it finds? Fortunately, just such a statement exists: the switch state-
ment. Listing 11-1 has an example of a switch statement.

Listing 11-1: An Answer for Every Occasion

import java.util.Scanner;
import java.util.Random;
import static java.lang.System.out;

class TheOldSwitcheroo {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 Random myRandom = new Random();
 int randomNumber;

 out.print("Type your question, my child: ");
 keyboard.nextLine();

 randomNumber = myRandom.nextInt(10) + 1;

 switch (randomNumber) {
 case 1:
 out.println("Yes. Isn't it obvious?");
 break;

 case 2:
 out.println("No, and don't ask again.");
 break;

 case 3:
 out.print("Yessir, yessir!");
 out.println(" Three bags full.");
 break;

219 Chapter 11: How to Flick a Virtual Switch

 case 4:
 out.print("What part of 'no'");
 out.println(" don't you understand?");
 break;

 case 5:
 out.println("No chance, Lance.");
 break;

 case 6:
 out.println("Sure, whatever.");
 break;

 case 7:
 out.print("Yes, but only if");
 out.println(" you're nice to me.");
 break;

 case 8:
 out.println("Yes (as if I care).");
 break;

 case 9:
 out.print("No, not until");
 out.println(" Cromwell seizes Dover.");
 break;

 case 10:
 out.print("No, not until");
 out.println(" Nell squeezes Rover.");
 break;

 default:
 out.print("You think you have");
 out.print(" problems?");
 out.print(" My random number");
 out.println(" generator is broken!");
 break;
 }

 out.println("Goodbye");

 keyboard.close();
 }
}

220 Part III: Controlling the Flow

The cases in a switch statement
Figure 11-1 shows three runs of the program in Listing 11-1. Here’s what
happens during one of these runs:

 ✓ The user types a heavy question, and the variable randomNumber gets a
value. In the second run of Figure 11-1, this value is 2.

 ✓ Execution of the code in Listing 11-1 reaches the top of the switch
statement, so the computer starts checking this statement’s case
clauses. The value 2 doesn’t match the topmost case clause (the case
1 clause), so the computer moves on to the next case clause.

 ✓ The value in the next case clause (the number 2) matches the value of
the randomNumber variable, so the computer executes the statements
in this case 2 clause. These two statements are

out.println("No, and don't ask again.");
break;

 The first of the two statements displays No, and don’t ask again
on the screen. The second statement is called a break statement.
(What a surprise!) When the computer encounters a break statement,
the computer jumps out of whatever switch statement it’s in. So in
Listing 11-1, the computer skips right past case 3, case 4, and so on.
The computer jumps to the statement just after the end of the switch
statement.

 ✓ The computer displays Goodbye because that’s what the statement
after the switch statement tells the computer to do.

Figure 11-1:
Running

the code of
Listing 11-1.

The overall idea behind the program in Listing 11-1 is illustrated in Figure 11-2.

221 Chapter 11: How to Flick a Virtual Switch

The default in a switch statement
What if something goes terribly wrong during a run of the Listing 11-1
program? Suppose that the expression myRandom.nextInt(10) + 1
generates a number that’s not in the 1 to 10 range. Then the computer
responds by dropping past all the case clauses. Instead of landing on a
case clause, the computer jumps to the default clause. In the default
clause, the computer displays You think you have problems?...,
and then breaks out of the switch statement. After the computer is out of
the switch statement, the computer displays Goodbye.

 You don’t really need to put a break at the very end of a switch statement.
In Listing 11-1, the last break (the break that’s part of the default clause) is
just for the sake of overall tidiness.

Figure 11-2:
A fork with
11 prongs.

222 Part III: Controlling the Flow

Picky details about the switch statement
A switch statement can take the following form:

switch (Expression) {
case FirstValue:
 Statements

case SecondValue:
 MoreStatements

// ... more cases...

default:
 EvenMoreStatements
}

Here are some tidbits about switch statements:

 ✓ The Expression doesn’t have to have an int value. It can be char,
byte, short, or int.

 For example, the following code works in Java 5 and later:

char letterGrade;
letterGrade =
 keyboard.findWithinHorizon(".",0).charAt(0);

switch (letterGrade) {
case 'A':
 System.out.println("Excellent");
 break;

case 'B':
 System.out.println("Good");
 break;

case 'C':
 System.out.println("Average");
 break;
}

 In fact, if you avoid using the Scanner class and its findWithinHorizon
method, this bullet’s switch statement works with all versions of Java —
old and new.

223 Chapter 11: How to Flick a Virtual Switch

 ✓ If you use Java 7 or later, the Expression can be a String. For example,
the following code doesn’t work with Java 6, but works well in Java 7:

String description;
description = keyboard.next();

switch (description) {
case "Excellent":
 System.out.println('A');
 break;

case "Good":
 System.out.println('B');
 break;

case "Average":
 System.out.println('C');
 break;
}

 ✓ The Expression doesn’t have to be a single variable. It can be any
expression of type char, byte, short, or int. For example, you can
simulate the rolling of two dice with the following code:

int die1, die2;

die1 = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

switch (die1 + die2) {
 //...etc.

 ✓ The cases in a switch statement don’t have to be in order. Here’s some
acceptable code:

switch (randomNumber) {
case 2:
 System.out.println("No, and don't ask again.");
 break;

case 1:
 System.out.println("Yes. Isn't it obvious?");
 break;

case 3:
 System.out.print("Yessir, yessir!");
 System.out.println(" Three bags full.");
 break;

//...etc.

224 Part III: Controlling the Flow

 This mixing of cases may slow you down when you’re trying to read a
program, but it’s legal nonetheless.

 ✓ You don’t need a case for each expected value of the Expression. You
can leave some expected values to the default. Here’s an example:

switch (randomNumber) {
case 1:
 System.out.println("Yes. Isn't it obvious?");
 break;

case 5:
 System.out.println("No chance, Lance.");
 break;

case 7:
 System.out.print("Yes, but only if");
 System.out.println(" you're nice to me.");
 break;

case 10:
 System.out.print("No, not until");
 System.out.println(" Nell squeezes Rover.");
 break;

default:
 System.out.print("Sorry,");
 System.out.println(" I just can't decide.");
 break;
}

 ✓ The default clause is optional.

switch (randomNumber) {
case 1:
 System.out.println("Yes. Isn't it obvious?");
 break;

case 2:
 System.out.println("No, and don't ask again.");
 break;

case 3:
 System.out.print("I'm too tired.");
 System.out.println(" Go ask somebody else.");
}
System.out.println("Goodbye");

 If you have no default clause, and a value that’s not covered by
any of the cases comes up, the switch statement does nothing. For
example, if randomNumber is 4, the preceding code displays Goodbye,
and nothing else.

225 Chapter 11: How to Flick a Virtual Switch

 ✓ In some ways, if statements are more versatile than switch state-
ments. For example, you can’t use a condition in a switch statement’s
Expression:

//You can't do this:
switch (age >= 12 && age < 65)

 You can’t use a condition as a case value, either:

//You can't do this:
switch (age) {
case age <= 12: //...etc.

To break or not to break
At one time or another, every Java programmer forgets to use break state-
ments. At first, the resulting output is confusing, but then the programmer
remembers fall-through. The term fall-through describes what happens when
you end a case without a break statement. What happens is that execution
of the code falls right through to the next case in line. Execution keeps fall-
ing through until you eventually reach a break statement or the end of the
entire switch statement.

If you don’t believe me, just look at Listing 11-2. This listing’s code has a
switch statement gone bad.

Listing 11-2: Please, Gimme a Break!

/*
 * This isn_t good code. The programmer forgot some
 * of the break statements.
 */
import java.util.Scanner;
import java.util.Random;
import static java.lang.System.out;

class BadBreaks {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 Random myRandom = new Random();
 int randomNumber;

 out.print("Type your question, my child: ");
 keyboard.nextLine();

 randomNumber = myRandom.nextInt(10) + 1;

(continued)

226 Part III: Controlling the Flow

 switch (randomNumber) {
 case 1:
 out.println("Yes. Isn't it obvious?");

 case 2:
 out.println("No, and don't ask again.");

 case 3:
 out.print("Yessir, yessir!");
 out.println(" Three bags full.");

 case 4:
 out.print("What part of 'no'");
 out.println(" don't you understand?");
 break;

 case 5:
 out.println("No chance, Lance.");

 case 6:
 out.println("Sure, whatever.");

 case 7:
 out.print("Yes, but only if");
 out.println(" you're nice to me.");

 case 8:
 out.println("Yes (as if I care).");

 case 9:
 out.print("No, not until");
 out.println(" Cromwell seizes Dover.");

 case 10:
 out.print("No, not until");
 out.println(" Nell squeezes Rover.");

 default:
 out.print("You think you have");
 out.print(" problems?");
 out.print(" My random number");
 out.println(" generator is broken!");
 }

 out.println("Goodbye");

 keyboard.close();
 }
}

Listing 11-2 (continued)

227 Chapter 11: How to Flick a Virtual Switch

I’ve put two runs of this code in Figure 11-3. In the first run, the randomNumber
is 7. The program executes cases 7 through 10, and the default. In the second
run, the randomNumber is 3. The program executes cases 3 and 4. Then,
because case 4 has a break statement, the program jumps out of the switch
and displays Goodbye.

Figure 11-3:
Please

make up
your mind.

 The switch statement in Listing 11-2 is missing some break statements. Even
without these break statements, the code compiles with no errors. But when
you run the code in Listing 11-2, you don’t get the results that you want.

Using Fall-Through to Your Advantage
Often, when you’re using a switch statement, you don’t want fall-through, so
you pepper break statements throughout the switch. But, sometimes, fall-
through is just the thing you need.

Take the number of days in a month. Is there a simple rule for this? Months
containing the letter “r” have 31 days? Months in which “i” comes before “e”
except after “c” have 30 days?

You can fiddle with if conditions all you want. But to handle all the possibili-
ties, I prefer a switch statement. Listing 11-3 demonstrates the idea.

Listing 11-3: Finding the Number of Days in a Month

import java.util.Scanner;

class DaysInEachMonth {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int month, numberOfDays = 0;
 boolean isLeapYear;

(continued)

228 Part III: Controlling the Flow

 System.out.print("Which month? ");
 month = keyboard.nextInt();

 switch (month) {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 numberOfDays = 31;
 break;

 case 4:
 case 6:
 case 9:
 case 11:
 numberOfDays = 30;
 break;

 case 2:
 System.out.print("Leap year (true/false)? ");
 isLeapYear = keyboard.nextBoolean();
 if (isLeapYear) {
 numberOfDays = 29;
 } else {
 numberOfDays = 28;
 }
 }

 System.out.print(numberOfDays);
 System.out.println(" days");

 keyboard.close();
 }
}

Figure 11-4 shows several runs of the program in Listing 11-3. For month
number 6, the computer jumps to case 6. There are no statements inside
the case 6 clause, so that part of the program’s run is pretty boring.

Listing 11-3 (continued)

229 Chapter 11: How to Flick a Virtual Switch

Figure 11-4:
How many
days until

the next big
deadline?

But with no break in the case 6 clause, the computer marches right along
to case 9. Once again, the computer finds no statements and no break, so
the computer ventures to the next case, which is case 11. At that point, the
computer hits pay dirt. The computer assigns 30 to numberOfDays, and
breaks out of the entire switch statement (see Figure 11-5).

February is the best month of all. For one thing, the February case in
Listing 11-3 contains a call to the Scanner class’s nextBoolean method.
The method expects me to type either true or false. The code uses what-
ever word I type to assign a value to a boolean variable. (In Listing 11-3, I
assign true or false to the isLeapYear variable.)

Figure 11-5:
Follow the
bouncing

ball.

230 Part III: Controlling the Flow

February also contains its own if statement. In Chapter 10, I nest if state-
ments within other if statements. But in February, I nest an if statement
within a switch statement. That’s cool.

Using a Conditional Operator
Java has a neat feature that I can’t resist writing about. Using this feature, you
can think about alternatives in a very natural way.

And what do I mean by “a natural way?” If I think out loud as I imitate the if
statement near the end of Listing 11-3, I come up with this:

//The thinking in Listing 11-3:
What should I do next?
If this is a leap year,
 I_ll make the numberOfDays be 29;
Otherwise,
 I_ll make the numberOfDays be 28.

I’m wandering into an if statement without a clue about what I’m doing
next. That seems silly. It’s February, and everybody knows what you do in
February. You ask how many days the month has.

In my opinion, the code in Listing 11-3 doesn’t reflect the most natural way to
think about February. So here’s a more natural way:

//A more natural way to think about the problem:
The value of numberOfDays is...
 Wait! Is this a leap year?
 If yes, 29
 If no, 28

In this second, more natural way of thinking, I know from the start that I’m
picking a number of days. So by the time I reach a fork in the road (Is this
a leap year?), the only remaining task is to choose between 29 and 28.

I can make the choice with finesse:

case 2:
 System.out.print("Leap year (true/false)? ");
 isLeapYear = keyboard.nextBoolean();
 numberOfDays = isLeapYear ? 29 : 28;

The ? : combination is called a conditional operator. In Figure 11-6, I show
you how my natural thinking about February can morph into the conditional
operator’s format.

231 Chapter 11: How to Flick a Virtual Switch

Figure 11-6:
From your

mind to the
computer’s

code.

Taken as a whole, isLeapYear ? 29 : 28 is an expression with a value.
And what value does this expression have? Well, the value of isLeapYear
? 29 : 28 is either 29 or 28. It depends on whether isLeapYear is or isn’t
true. That’s how the conditional operator works:

 ✓ If the stuff before the question mark is true, the whole expression’s
value is whatever comes between the question mark and the colon.

 ✓ If the stuff before the question mark is false, the whole expression’s
value is whatever comes after the colon.

Figure 11-7 gives you a goofy way to visualize these ideas.

Figure 11-7:
Have you
ever seen

an expres-
sion talking

to itself?

232 Part III: Controlling the Flow

So the conditional operator’s overall effect is as though the computer is
executing

numberOfDays = 29;

or

numberOfDays = 28;

One way or another, numberOfDays gets a value, and the code solves the
problem with style.

Chapter 12

Around and Around It Goes
In This Chapter
▶ Creating program loops

▶ Formulating solutions to problems with loops

▶ Diagnosing loop problems

C
hapter 8 has code to reverse the letters in a four-letter word that the
user enters. In case you haven’t read Chapter 8 or you just don’t want to

flip to it, here’s a quick recap of the code:

c1 = keyboard.findWithinHorizon(".",0).charAt(0);
c2 = keyboard.findWithinHorizon(".",0).charAt(0);
c3 = keyboard.findWithinHorizon(".",0).charAt(0);
c4 = keyboard.findWithinHorizon(".",0).charAt(0);

System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(c1);

The code is just dandy for words with exactly four letters, but how do you
reverse a five-letter word? As the code stands, you have to add two new
statements:

c1 = keyboard.findWithinHorizon(".",0).charAt(0);
c2 = keyboard.findWithinHorizon(".",0).charAt(0);
c3 = keyboard.findWithinHorizon(".",0).charAt(0);
c4 = keyboard.findWithinHorizon(".",0).charAt(0);
c5 = keyboard.findWithinHorizon(".",0).charAt(0);

System.out.print(c5);
System.out.print(c4);
System.out.print(c3);
System.out.print(c2);
System.out.print(c1);

What a drag! You add statements to a program whenever the size of a word
changes! You remove statements when the input shrinks! That can’t be the
best way to solve the problem. Maybe you can command a computer to add
statements automatically. (But then again, maybe you can’t.)

234 Part III: Controlling the Flow

As luck would have it, you can do something that’s even better. You can write
a statement once and tell the computer to execute the statement many times.
How many times? You can tell the computer to execute a statement as many
times as it needs to be executed.

That’s the big idea. The rest of this chapter has the details.

Repeating Instructions Over and Over
Again (Java while Statements)

Here’s a simple dice game: Keep rolling two dice until you roll 7 or 11. Listing 12-1
has a program that simulates the action in the game, and Figure 12-1 shows two
runs of the program.

Figure 12-1:
Momma
needs a

new pair of
shoes.

Listing 12-1: Roll 7 or 11

import java.util.Random;
import static java.lang.System.out;

class SimpleDiceGame {

 public static void main(String args[]) {
 Random myRandom = new Random();
 int die1 = 0, die2 = 0;

 while (die1 + die2 != 7 && die1 + die2 != 11) {
 die1 = myRandom.nextInt(6) + 1;
 die2 = myRandom.nextInt(6) + 1;

235 Chapter 12: Around and Around It Goes

 out.print(die1);
 out.print(" ");
 out.println(die2);
 }

 out.print("Rolled ");
 out.println(die1 + die2);
 }
}

At the core of Listing 12-1 is a thing called a while statement (also known as a
while loop). A while statement has the following form:

while (Condition) {
 Statements
}

Rephrased in English, the while statement in Listing 12-1 would say

while the sum of the two dice isn't 7 and isn't 11
keep doing all the stuff in curly braces: {

}

The stuff in curly braces (the stuff that’s repeated over and over) is the code
that gets two new random numbers and displays those random numbers’
values. The statements in curly braces are repeated as long as die1 + die2
!= 7 && die1 + die2 != 11 keeps being true.

Each repetition of the statements in the loop is called an iteration of the
loop. In Figure 12-1, the first run has 2 iterations, and the second run has 12
iterations.

When die1 + die2 != 7 && die1 + die2 != 11 is no longer true (that
is, when the sum is either 7 or 11), the repeating of statements stops dead in its
tracks. The computer marches on to the statements that come after the loop.

Following the action in a loop
To trace the action of the code in Listing 12-1, I’ll borrow numbers from the
first run in Figure 12-1:

 ✓ At the start, the values of die1 and die2 are both 0.

 ✓ The computer gets to the top of the while statement and checks to see if
die1 + die2 != 7 && die1 + die2 != 11 is true (see Figure 12-2).
The condition is true, so the computer takes the true path in Figure 12-3.

236 Part III: Controlling the Flow

 The computer performs an iteration of the loop. During this iteration, the
computer gets new values for die1 and die2 and prints those values on
the screen. In the first run of Figure 12-1, the new values are 3 and 1.

 ✓ The computer returns to the top of the while statement and checks to
see if die1 + die2 != 7 && die1 + die2 != 11 is still true. The
condition is true, so the computer takes the true path in Figure 12-3.

 The computer performs another iteration of the loop. During this itera-
tion, the computer gets new values for die1 and die2 and prints those
values on the screen. In Figure 12-1, the new values are 4 and 3.

Figure 12-2:
Two wrongs

don’t make
a right, but

two trues
make a true.

Figure 12-3:
Paths

through
the code in

Listing 12-1.

237 Chapter 12: Around and Around It Goes

 ✓ The computer returns to the top of the while statement and checks
to see if die1 + die2 != 7 && die1 + die2 != 11 is still true.
Lo and behold! This condition has become false! (See Figure 12-4.) The
computer takes the false path in Figure 12-3.

 The computer leaps to the statements after the loop. The computer
displays Rolled 7 and ends its run of the program.

Figure 12-4:
Look! I

rolled a
seven!

Statements and blocks (plagiarizing my own
sentences from Chapter 9)

Java’s while statements have a lot in
common with if statements. Like an if state-
ment, a while statement is a compound
 statement — that is, a while statement
includes other statements within it. Also, both
if statements and while statements typically
include blocks of statements. When you sur-
round a bunch of statements with curly braces,
you get what’s called a block, and a block
behaves, in all respects, like a single statement.

In a typical while statement, you want the
computer to repeat several smaller statements
over and over again. To repeat several smaller
statements, you combine those statements into
one big statement. To do this, you make a block
using curly braces.

In Listing 12-1, the block

{
 die1=myRandom.nextInt(6)+1;
 die2=myRandom.nextInt(6)+1;

 out.print(die1);
 out.print(" ");
 out.println(die2);
}

is a single statement. It’s a statement that has,
within it, five smaller statements. So this big
block (this single statement) serves as one
big statement inside the while statement in
Listing 12-1.

That’s the story about while statements and
blocks. To find out how this stuff applies to if
statements, see the “Statements and blocks”
sidebar near the end of Chapter 9.

238 Part III: Controlling the Flow

No early bailout
In Listing 12-1, when the computer finds die1 + die2 != 7 && die1 +
die2 != 11 to be true, the computer marches on and executes all five state-
ments inside the loop’s curly braces. The computer executes

die1 = myRandom.nextInt(6) + 1;
die2 = myRandom.nextInt(6) + 1;

Maybe (just maybe), the new values of die1 and die2 add up to 7. Even so,
the computer doesn’t jump out in mid-loop. The computer finishes the itera-
tion and executes

out.print(die1);
out.print(" ");
out.println(die2);

one more time. The computer performs the test again (to see if die1 +
die2 != 7 && die1 + die2 != 11 is still true) only after it fully exe-
cutes all five statements in the loop.

Thinking about Loops (What
Statements Go Where)

Here’s a simplified version of the card game Twenty-One: You keep taking
cards until the total is 21 or higher. Then, if the total is 21, you win. If the total
is higher, you lose. (By the way, each face card counts as a 10.) To play this
game, you want a program whose runs look like the runs in Figure 12-5.

Figure 12-5:
You win

sum; you
lose sum.

239 Chapter 12: Around and Around It Goes

In most sections of this book, I put a program’s listing before the description
of the program’s features. But this section is different. This section deals with
strategies for composing code. So in this section, I start by brainstorming
about strategies.

Finding some pieces
How do you write a program that plays a simplified version of Twenty-One? I
start by fishing for clues in the game’s rules, spelled out in this section’s first
paragraph. The big fishing expedition is illustrated in Figure 12-6.

Figure 12-6:
Thinking

about a pro-
gramming

problem.

With the reasoning in Figure 12-6, I need a loop and an if statement:

while (total < 21) {
 //do stuff
}

if (total == 21) {
 //You win
} else {
 //You lose
}

240 Part III: Controlling the Flow

What else do I need to make this program work? Look at the sample output in
Figure 12-5. I need a heading with the words Card and Total. That’s a call to
System.out.println:

System.out.println("Card Total");

I also need several lines of output — each containing two numbers. For exam-
ple, in Figure 12-5, the line 6 14 displays the values of two variables. One
variable stores the most recently picked card; the other variable stores the
total of all cards picked so far:

System.out.print(card);
System.out.print(" ");
System.out.println(total);

Now I have four chunks of code, but I haven’t decided how they all fit
together. Well, you can go right ahead and call me crazy. But at this point
in the process, I imagine those four chunks of code circling around one
another, like part of a dream sequence in a low-budget movie. As you may
imagine, I’m not very good at illustrating circling code in dream sequences.
Even so, I handed my idea to the art department folks at Wiley Publishing,
and they came up with the picture in Figure 12-7.

Figure 12-7:
 . . . and

where they
stop, nobody

knows.

241 Chapter 12: Around and Around It Goes

Assembling the pieces
Where should I put each piece of code? The best way to approach the prob-
lem is to ask how many times each piece of code should be executed:

 ✓ The program displays card and total values more than once. For
example, in the first run of Figure 12-5, the program displays these
values four times (first 8 8, then 6 14, and so on). To get this repeated
display, I put the code that creates the display inside the loop:

while (total < 21) {
 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

 ✓ The program displays the Card Total heading only once per run. This
display comes before any of the repeated number displays, so I put the
heading code before the loop:

System.out.println("Card Total");

while (total < 21) {
 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

 ✓ The program displays You win or You lose only once per run. This
message display comes after the repeated number displays. So I put the
win/lose code after the loop:

//Preliminary draft code - NOT ready for prime time:
System.out.println("Card Total");

while (total < 21) {
 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

if (total == 21) {
 System.out.println("You win :-)");
} else {
 System.out.println("You lose :-(");
}

242 Part III: Controlling the Flow

Getting values for variables
I almost have a working program. But if I take the code that I’ve developed for
a mental test run, I face a few problems. To see what I mean, picture yourself
in the computer’s shoes for a minute. (Well, a computer doesn’t have shoes.
Picture yourself in the computer’s boots.)

You start at the top of the code shown in the previous section (the code
that starts with the Preliminary draft comment). In the code’s first
statement, you display the words Card Total. So far, so good. But then
you encounter the while loop and test the condition total < 21. Well, is
total less than 21, or isn’t it? Honestly, I’m tempted to make up an answer
because I’m embarrassed about not knowing what the total variable’s
value is. (I’m sure the computer is embarrassed, too.)

The variable total must have a known value before the computer reaches
the top of the while loop. Because a player starts with no cards at all, the
initial total value should be 0. That settles it. I declare int total = 0 at
the top of the program.

But what about my friend, the card variable? Should I set card to zero also?
No. There’s no zero-valued card in a deck (at least, not when I’m playing fair).
Besides, card should get a new value several times during the program’s run.

Wait! In the previous sentence, the phrase several times tickles a neuron in
my brain. It stimulates the inside a loop reflex. So I place an assignment to the
card variable inside my while loop:

//This is a DRAFT - still NOT ready for prime time:
int card, total = 0;

System.out.println("Card Total");

while (total < 21) {
 card = myRandom.nextInt(10) + 1;

 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

if (total == 21) {
 System.out.println("You win :-)");
} else {
 System.out.println("You lose :-(");
}

243 Chapter 12: Around and Around It Goes

The code still has an error, and I can probably find the error with more com-
puter role-playing. But instead, I get daring. I run this beta code to see what
happens. Figure 12-8 shows part of a run.

Figure 12-8:
An incorrect

run.

Unfortunately, the run in Figure 12-8 doesn’t stop on its own. This kind of
processing is called an infinite loop. The loop runs and runs until someone
trips over the computer’s extension cord.

 You can stop a program’s run dead in its tracks. Look for the tiny red rectangle
at the top of Eclipse’s Console view. When you hover over the rectangle, the
tooltip says "Terminate." When you click the rectangle, the active Java pro-
gram stops running, and the rectangle turns gray.

From infinity to affinity
For some problems, an infinite loop is normal and desirable. Consider, for
example, a real-time mission-critical application — air traffic control, or the
monitoring of a heart-lung machine. In these situations, a program should run
and run and run.

But a game of Twenty-One should end pretty quickly. In Figure 12-8, the game
doesn’t end because the total never reaches 21 or higher. In fact, the total
is always zero. The problem is that my code has no statement to change the
total variable’s value. I should add each card’s value to the total:

total += card;

244 Part III: Controlling the Flow

Again, I ask myself where this statement belongs in the code. How many
times should the computer execute this assignment statement? Once at the
start of the program? Once at the end of the run? Repeatedly?

The computer should repeatedly add a card’s value to the running total. In
fact, the computer should add to the total each time a card gets drawn. So
the preceding assignment statement should be inside the while loop, right
alongside the statement that gets a new card value:

card = myRandom.nextInt(10) + 1;
total += card;

With this revelation, I’m ready to see the complete program. The code is in
Listing 12-2, and two runs of the code are shown in Figure 12-5.

Listing 12-2: A Simplified Version of the Game Twenty-One

import java.util.Random;

class PlayTwentyOne {

 public static void main(String args[]) {
 Random myRandom = new Random();
 int card, total = 0;

 System.out.println("Card Total");

 while (total < 21) {
 card = myRandom.nextInt(10) + 1;
 total += card;

 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
 }

 if (total == 21) {
 System.out.println("You win :-)");
 } else {
 System.out.println("You lose :-(");
 }
 }
}

If you’ve read this whole section, you’re probably exhausted. Creating a
loop can be a lot of work. Fortunately, the more you practice, the easier it
becomes.

245 Chapter 12: Around and Around It Goes

Thinking about Loops (Priming)
I remember when I was a young boy. We lived on Front Street in Philadelphia,
near where the El train turned onto Kensington Avenue. Come early morning,
I’d have to go outside and get water from the well. I’d pump several times
before any water would come out. Ma and Pa called it “priming the pump.”

These days I don’t prime pumps. I prime while loops. Consider the case of a
busy network administrator. She needs a program that extracts a username
from an e-mail address. For example, the program reads

John@BurdBrain.com

and writes

John

How does the program do it? Like other examples in the chapter, this problem
involves repetition:

Repeatedly do the following:
 Read a character.
 Write the character.

Escapism
In Figure 12-5, you see the numbers 8 8, then
6 14 (and so on) displayed. I wanted these
numbers to be right under the heading words
Card and Total, so I used a trick to make
the numbers line up correctly. Normally, I can
get perfect vertical columns by pressing the
tab key, but a computer program creates the
nicely-aligned output in Figure 12-5. How did I
get a computer program to press the tab key?

In Java, there’s a way. You can insert a tab in
your output by putting \t inside double quote
marks.

System.out.println
 ("Card\tTotal");

System.out.print(card);
System.out.print("\t");

System.out.println(total);

In the first statement, the computer displays
Card, then jumps to the next tab stop on
the screen, and displays Total. In the next
three statements, the computer displays a
card number (like the number 6), then jumps
to the next tab stop (directly under the word
Total), and displays a total value (like the
number 14).

The \t combination of characters is an
example of an escape sequence. Another of
Java’s escape sequences, the combination \n,
moves the cursor to a new line. In other words,
System.out.print("Hello\n")
does the same thing as System.out.
println("Hello").

246 Part III: Controlling the Flow

The program then stops the repetition when it finds the @ sign. I take a stab
at writing this program. My first attempt doesn’t work, but it’s a darn good
start. It’s in Listing 12-3.

Listing 12-3: Trying to Get a Username from an E-Mail Address

/*
 * This code does NOT work, but I_m not discouraged.
 */
import java.util.Scanner;

class FirstAttempt {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 char symbol = ' ';

 while (symbol != '@') {
 symbol = keyboard.findWithinHorizon(".",0)
 .charAt(0);
 System.out.print(symbol);
 }

 System.out.println();

 keyboard.close();
 }
}

When you run the code in Listing 12-3, you get the output shown in Figure 12-9.
The user types one character after another — the letter J, then o, then h, and
so on. At first, the program in Listing 12-3 does nothing. (The computer doesn’t
send any of the user’s input to the program until the user presses Enter.) After
the user types a whole e-mail address and presses Enter, the program gets its
first character (the J in John).

Figure 12-9:
Oops! Got

the @ sign,
too.

Unfortunately, the program’s output isn’t what you expect. Instead of just the
username John, you get the username and the @ sign.

247 Chapter 12: Around and Around It Goes

To find out why this happens, follow the computer’s actions as it reads the
input John@BurdBrain.com:

Set symbol to ' ' (a blank space).

Is that blank space the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'J'.
 Print the letter 'J'.

Is that 'J' the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'o'.
 Print the letter 'o'.

Is that 'o' the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'h'.
 Print the letter 'h'.

Is that 'h' the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'n'.
 Print the letter 'n'.

Is that 'n' the same as an @ sign? //Here's the problem.
No, so perform a loop iteration.
 Input the @ sign.
 Print the @ sign. //Oops!

Is that @ sign the same as an @ sign?
Yes, so stop iterating.

Near the end of the program’s run, the computer compares the letter n with
the @ sign. Because n isn’t an @ sign, the computer dives right into the loop:

 ✓ The first statement in the loop reads an @ sign from the keyboard.

 ✓ The second statement in the loop doesn’t check to see if it’s time to
stop printing. Instead, that second statement just marches ahead and
displays the @ sign.

After you’ve displayed the @ sign, there’s no going back. You can’t change your
mind and undisplay the @ sign. So the code in Listing 12-3 doesn’t quite work.

248 Part III: Controlling the Flow

Working on the problem
You learn from your mistakes. The problem with Listing 12-3 is that, between
reading and writing a character, the program doesn’t check for an @ sign.
Instead of doing “Test, Input, Print,” it should do “Input, Test, Print.” That is,
instead of doing this:

Is that 'o' the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'h'.
 Print the letter 'h'.

Is that 'h' the same as an @ sign?
No, so perform a loop iteration.
 Input the letter 'n'.
 Print the letter 'n'.

Is that 'n' the same as an @ sign? //Here's the problem.
No, so perform a loop iteration.
 Input the @ sign.
 Print the @ sign. //Oops!

the program should do this:

 Input the letter 'o'.
Is that 'o' the same as an @ sign?
No, so perform a loop iteration.
 Print the letter 'o'.

 Input the letter 'n'.
Is that 'n' the same as an @ sign?
No, so perform a loop iteration.
 Print the letter 'n'.

 Input the @ sign.
Is that @ sign the same as an @ sign?
Yes, so stop iterating.

This cycle is shown in Figure 12-10.

Figure 12-10:
What the
program

needs to do.

249 Chapter 12: Around and Around It Goes

You can try to imitate the following informal pattern:

 Input a character.
Is that character the same as an @ sign?
If not, perform a loop iteration.
 Print the character.

The problem is, you can’t put a while loop’s test in the middle of the loop:

//This code doesn't work
// the way you want it to work:
{
 symbol = keyboard.findWithinHorizon(".",0).charAt(0);
while (symbol != '@')
 System.out.print(symbol);
}

You can’t sandwich a while statement’s condition between two of the state-
ments that you intend to repeat. So what can you do? You need to follow
the flow in Figure 12-11. Because every while loop starts with a test, that’s
where you jump into the circle, First Test, then Print, and finally Input.

Figure 12-11:
Jumping into

a loop.

Listing 12-4 shows the embodiment of this “test, then print, then input” strategy.

Listing 12-4: Nice Try, But . . .

/*
 * This code almost works, but there's one tiny error:
 */
import java.util.Scanner;

class SecondAttempt {

 public static void main(String args[]) {

(continued)

250 Part III: Controlling the Flow

 Scanner keyboard = new Scanner(System.in);
 char symbol = ' ';

 while (symbol != '@') {
 System.out.print(symbol);
 symbol = keyboard.findWithinHorizon(".",0)
 .charAt(0);
 }

 System.out.println();

 keyboard.close();
 }
}

A run of the Listing 12-4 code is shown in Figure 12-12. The code is almost
correct, but I still have a slight problem. Notice the blank space before the
user’s input. The program races prematurely into the loop. The first time the
computer executes the statements

Figure 12-12:
The

 computer
displays an
extra blank

space.

System.out.print(symbol);
symbol = keyboard.findWithinHorizon(".",0).charAt(0);

the computer displays an unwanted blank space. Then the computer gets the
J in John. In some applications, an extra blank space is no big deal. But in
other applications, extra output can be disastrous.

Fixing the problem
Disastrous or not, an unwanted blank space is the symptom of a logical flaw.
The program shouldn’t display results before it has any meaningful results to
display. The solution to this problem is called . . . (drumroll, please) . . . priming
the loop. You pump findWithinHorizon(".",0).charAt(0) once to get
some values flowing. Listing 12-5 shows you how to do it.

Listing 12-4 (continued)

251 Chapter 12: Around and Around It Goes

Listing 12-5: How to Prime a Loop

/*
 * This code works correctly!
 */
import java.util.Scanner;

class GetUserName {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 char symbol;

 symbol = keyboard.findWithinHorizon(".",0)
 .charAt(0);

 while (symbol != '@') {
 System.out.print(symbol);
 symbol = keyboard.findWithinHorizon(".",0)
 .charAt(0);
 }

 System.out.println();

 keyboard.close();
 }
}

Listing 12-5 follows the strategy shown in Figure 12-13. First you get a
character (the letter J in John, for example), and then you enter the loop.
After you’re in the loop, you test the letter against the @ sign and print the
letter if it’s appropriate to do so. Figure 12-14 shows a beautiful run of the
GetUserName program.

Figure 12-13:
The strategy

in Listing
12-5.

252 Part III: Controlling the Flow

Figure 12-14:
A run of

the code in
Listing 12-5.

The priming of loops is an important programming technique. But it’s not the
end of the story. In Chapters 14, 15, and 16, you can read about some other
useful looping tricks.

Chapter 13

Piles of Files: Dealing with
Information Overload

In This Chapter
▶ Using data on your hard drive

▶ Writing code to access the hard drive

▶ Troubleshooting input/output behavior

C
onsider these scenarios:

 ✓ You’re a business owner with hundreds of invoices. To avoid boxes full
of paper, you store invoice data in a file on your hard drive. You need
customized code to sort and classify the invoices.

 ✓ You’re an astronomer with data from scans of the night sky. When you’re
ready to analyze a chunk of data, you load the chunk onto your comput-
er’s hard drive.

 ✓ You’re the author of a popular self-help book. Last year’s fad was called
the Self Mirroring Method. This year’s craze is the Make Your Cake
System. You can’t modify your manuscript without converting to the
publisher’s new specifications. You need software to make the task
bearable.

Each situation calls for a new computer program, and each program reads
from a large data file. On top of all that, each program creates a brand new
file containing bright, shiny results.

In previous chapters, the examples get input from the keyboard and send
output to the Eclipse Console view. That’s fine for small tasks, but you can’t
have the computer prompt you for each bit of night sky data. For big prob-
lems, you need lots of data, and the best place to store the data is on a com-
puter’s hard drive.

254 Part III: Controlling the Flow

Running a Disk-Oriented Program
To deal with volumes of data, you need tools for reading from (and writing to)
disk files. At the mere mention of disk files, some peoples’ hearts start to palpi-
tate with fear. After all, a disk file is elusive and invisible. It’s stored somewhere
inside your computer, with some magic magnetic process.

The truth is, getting data from a disk is very much like getting data from the
keyboard. And printing data to a disk is like printing data to the computer
screen.

 In this book, displaying a program’s text output “on the computer screen”
means displaying text in Eclipse’s Console view. If you shun Eclipse in favor of
a different IDE (such as NetBeans or IntelliJ IDEA) or you shun all IDEs in favor
of your system’s command window, then, for you, “on the computer screen”
means something slightly different. Please read between the lines as neces-
sary. Also, I’m well aware that some computers have flash memory with no
honest-to-goodness disks inside them. So terms like “disk-oriented” and “disk
files” are showing signs of age. But let’s face facts: A “record store” no longer
sells vinyl records, and in U.S. measurement units, 12 inches are no longer the
length the of the king’s foot. Today’s LCD screens no longer need saving. And,
unlike the old mechanical car radios, a web page’s radio buttons don’t mark
your favorite stations.

Consider the scenario when you run the code in the previous chapters. You
type some stuff on the keyboard. The program takes this stuff and spits out
some stuff of its own. The program sends this new stuff to the Console view.
In effect, the flow of data goes from the keyboard, to the computer’s innards,
and on to the screen, as shown in Figure 13-1.

Of course, the goal in this chapter is the scenario in Figure 13-2. There’s a file
containing data on your hard drive. The program takes data from the disk file
and spits out some brand-new data. The program then sends the new data to
another file on the hard drive. In effect, the flow of data goes from a disk file,
to the computer’s innards, and on to another disk file.

The two scenarios in Figures 13-1 and 13-2 are very similar. In fact, it helps to
remember these fundamental points:

 ✓ The stuff in a disk file is no different from the stuff that you type on a
keyboard.

 If a keyboard-reading program expects you to type 19.95 5, then the
corresponding disk-reading program expects a file containing those
same characters, 19.95 5. If a keyboard-reading program expects you
to press Enter and type more characters, then the corresponding disk-
reading program expects more characters on the next line in the file.

255 Chapter 13: Piles of Files: Dealing with Information Overload

Figure 13-1:
Using the
keyboard

and screen.

Figure 13-2:
Using disk

files.

256 Part III: Controlling the Flow

 ✓ The stuff in a disk file is no different from the stuff that you see in
Eclipse’s Console view.

 If a screen-printing program displays the number 99.75, then the cor-
responding disk-writing program writes the number 99.75 to a file. If a
screen-printing program moves the cursor to the next line, then the cor-
responding disk-writing program creates a new line in the file.

If you have trouble imagining what you have in a disk file, just imagine the
text that you would type on the keyboard or the text that you would see on
the computer screen (that is, in Eclipse’s Console view). That same text can
appear in a file on your disk.

A sample program
Listing 13-1 contains a keyboard/screen program. The program multiplies unit
price by quantity to get a total price. A run of the code is shown in Figure 13-3.

Figure 13-3:
Read

from the
keyboard;

write to the
screen.

Listing 13-1: Using the Keyboard and the Screen

import java.util.Scanner;

class ComputeTotal {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 double unitPrice, quantity, total;

 unitPrice = keyboard.nextDouble();
 quantity = keyboard.nextInt();

 total = unitPrice * quantity;

 System.out.println(total);

 keyboard.close();
 }
}

257 Chapter 13: Piles of Files: Dealing with Information Overload

 Grouping separators vary from one country to another. The run shown in
Figure 13-3 works almost everywhere in the world. But if the unit price is nine-
teen and ninety-five hundredths, you type 19.95 (with a dot) in some coun-
tries and 19,95 (with a comma) in others. When you install the computer’s
operating system, you tell it what country you live in. Java programs access
this information and use it to customize the way the nextDouble method
works.

The goal is to write a program like the one in Listing 13-1. But, instead of talk-
ing to your keyboard and screen, this new program talks to your hard drive.
The new program reads unit price and quantity from your hard drive and
writes the total back to your hard drive.

Java’s API has everything you need for interacting with a hard drive. A nice
example is in Listing 13-2.

Listing 13-2: Using Input and Output Files

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ReadAndWrite {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("rawData.txt"));
 PrintStream diskWriter =
 new PrintStream("cookedData.txt");
 double unitPrice, quantity, total;

 unitPrice = diskScanner.nextDouble();
 quantity = diskScanner.nextInt();

 total = unitPrice * quantity;

 diskWriter.println(total);

 diskScanner.close();
 diskWriter.close();
 }
}

For a guide to the care and feeding of the rawData.txt file (whose name
appears in Listing 13-2), see the upcoming "Creating an input file" section.

258 Part III: Controlling the Flow

Creating code that messes
with your hard drive

 “I _____ (print your name)_____ agree to pay $______ each month on the
___th day of the month.”

Fill in the blanks. That’s all you have to do. Reading input from a disk can
work the same way. Just fill in the blanks in Listing 13-3.

Listing 13-3: A Template to Read Data from a Disk File

/*
 * Before Eclipse can compile this code,
 * you must fill in the blanks.
 */
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

class ___________ {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("_________"));

 ______ = diskScanner.nextInt();
 ______ = diskScanner.nextDouble();
 ______ = diskScanner.nextLine();
 ______ = diskScanner.findWithinHorizon(".",0)
 .charAt(0);

 // Etc.

 diskScanner.close();
 }
}

To use Listing 13-3, make up a name for your class. Insert that name into
the first blank space. Type the name of the input file in the second space
(between the quotation marks). Then, to read a whole number from the
input file, call diskScanner.nextInt. To read a number that has a decimal
point, call diskScanner.nextDouble. You can call any of the Scanner
methods in Chapter 5’s Table 5-1 — the same methods you call when you get
keystrokes from the keyboard.

259 Chapter 13: Piles of Files: Dealing with Information Overload

The stuff in Listing 13-3 isn’t a complete program. Instead, it’s a code
 template — a half-baked piece of code, with spaces for you to fill in.

With the template in Listing 13-3, you can input data from a disk file. With a
similar template, you can write output to a file. The template is in Listing 13-4.

Listing 13-4: A Template to Write Data to a Disk File

/*
 * Before Eclipse can compile this code,
 * you must fill in the blanks.
 */
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ___________ {

 public static void main(String args[])
 throws FileNotFoundException {

 PrintStream diskWriter =
 new PrintStream("_________");

 diskWriter.print(_____);
 diskWriter.println(_____);

 // Etc.

 diskWriter.close();
 }
}

To use Listing 13-4, insert the name of your class into the first blank space.
Type the name of the output file in the space between the quotation marks.
Then, to write part of a line to the output file, call diskWriter.print. To
write the remainder of a line to the output file, call diskWriter.println.

 Eclipse has a built-in feature for creating and inserting code templates. To get
started using Eclipse templates, choose Window➪Preferences (in Windows)
or Eclipse➪Preferences (on a Mac). In the resulting Preferences dialog box,
choose Java➪Editor➪Templates. Creating new templates isn’t simple. But if
you poke around a bit, you accomplish a lot.

If your program gets input from one disk file and writes output to another, com-
bine the stuff from Listings 13-3 and 13-4. When you do, you get a program like
the one in Listing 13-2.

260 Part III: Controlling the Flow

A quick look at Java’s disk access facilities
Templates like the ones in Listings 13-3 and
13-4 are very nice. But knowing how the tem-
plates work is even better. Here are a few tid-
bits describing the inner workings of Java’s disk
access code.

 ✓ A PrintStream is something you can
use for writing output .

 A PrintStream is like a Scanner. The
big difference is that a Scanner is for
reading input and a PrintStream is for
writing output. To see what I mean, look at
Listing 13-2. Notice the similarity between
the statements that use Scanner and the
statements that use PrintStream.

 The word PrintStream is defined in the
Java API.

 ✓ In Listing 13-2, the expression new
File("rawData.txt") plays the
same role that System.in plays in so
many other programs .

 Just as System.in stands for the com-
puter’s keyboard, the expression new
File("rawData.txt") stands for a
file on your computer’s hard drive. When the
computer calls new File("rawData.
txt") , the computer creates some-
thing like System.in — something you
can stuff inside the new Scanner()
parentheses.

 The word File is defined in the Java API.

 ✓ A FileNotFoundException is some-
thing that may go wrong during an attempt
to read input from a disk file (or an attempt
to write output to a disk file) .

 Disk file access is loaded with pitfalls. Even
the best programs run into disk access
trouble occasionally. So to brace against
such pitfalls, Java insists on your adding
some extra words to your code.

 In Listing 13-2, the added words throws
FileNotFoundException form a
throws clause. A throws clause is a kind of
disclaimer. Putting a throws clause in your
code is like saying, “I realize that this code
can run into trouble.”

 Of course, in the legal realm, you often
have no choice about signing disclaim-
ers. “If you don’t sign this disclaimer, then
the surgeon won’t operate on you.” Okay,
then I’ll sign it. The same is true with a Java
throws clause. If you put things like new
PrintStream("cookedData.txt")
in your code, and you don’t add something
like throws FileNotFoundException,
then the Java compiler refuses to compile
your code.

 So when do you need this throws
F i l e N o t F o u n d E x c e p t i o n
clause, and when should you do with-
out it? Well, having certain things
in your code — things like new
PrintStream("cookedData.
txt")— forces you to create a throws
clause. You can spend some time learning
all about the kinds of things that demand
throws clauses. But at this point, it’s better
to concentrate on other programming
issues. As a beginning Java programmer,
the safest thing to do is to follow the tem-
plates in Listings 13-3 and 13-4.

 The word FileNotFoundException
is . . . you guessed it . . . defined in the
Java API.

 ✓ To create this chapter’s code, I made
up the names diskScanner and
diskWriter .

 The words diskScanner and
diskWriter don’t come from the Java
API. In place of diskScanner and

261 Chapter 13: Piles of Files: Dealing with Information Overload

Running the sample program
Testing the code in Listing 13-2 is a three-step process. Here’s an outline of
the three steps:

 1. Create the rawData.txt file.

 2. Run the code in Listing 13-2.

 3. View the contents of the cookedData.txt file.

The next few sections cover each step in detail.

Creating an input file
You can use any plain old text editor to create an input file for the code in
Listing 13-2. In this section, I show you how to use Eclipse’s built-in editor.

To create an input file:

 1. Select a project in Eclipse’s Package Explorer.

 In this example, select the 13-02 project (the project containing the code
from Listing 13-2).

 In the Package Explorer, select a branch whose label is the name of
a project. (Select the 13-02 branch to run the code in Listing 13-2.)
Don’t select an item within a project. (For example, don’t select the src
branch or the (default package) branch.)

diskWriter, you can use any names
you want. All you have to do is to use the
names consistently within each of your
Java programs.

 ✓ A call to the close method ends the con-
nection between your program and the file .

 In many of this book’s examples, you
sever the connection between your pro-
gram and the computer keyboard by call-
ing keyboard.close(). The same
is true when you call the close method
for a disk file’s scanner or a disk file’s
PrintStream instance. Calling the
close method reminds Java to finish all
pending read or write operations and to

break the program’s connection to the disk
file, the keyboard, or to whatever else holds
data for the program.

 This book’s examples are pretty simple.
If you omit a close method call in one
of these examples, you might get a warn-
ing message from Eclipse, but the world
doesn’t end. (That is, your program still runs
correctly.) However, in a serious, make-it-
or-break-it application, the proper place-
ment of close calls is important. These
close calls ensure the proper completion
of the program’s input and output actions
and help free up disk resources for use by
other running programs.

262 Part III: Controlling the Flow

 2. In Eclipse’s main menu, choose File➪New➪File.

 Eclipse’s New File dialog box opens.

 3. In the File Name field, type the name of your new data file.

 You can type any name that your computer considers to be a valid
filename. For this section’s example, I used the name rawData.txt,
but other names, such as rawData.dat, rawData, or raw123.01.
dataFile, are fine. I try to avoid troublesome names (including short,
uninformative names and names containing blank spaces), but the name
you choose is entirely up to you (and your computer’s operating system,
and your boss’s whims, and your customer’s specifications).

 4. Click Finish.

 The file’s name appears in Eclipse’s Package Explorer. An empty editor
(with the new file’s name on its tab) appears in Eclipse’s editor area.

 5. Type text in the editor.

 To create this section’s example, I typed the text 19.95 5, as shown in
Figure 13-4. To create your own example, type whatever text your pro-
gram needs during its run.

Figure 13-4:
Editing an
input file.

 This section’s steps apply when you use Eclipse to create an input file. You
can use other programs to create input files, such as Windows Notepad or
Macintosh TextEdit. But if you do, you have to be careful about file formats
and file name extensions. For example, to create a file named raw123.01.
dataFile using Windows Notepad, type "raw123.01.dataFile" (with
quotation marks) in the File Name field of the Save As dialog box. If you don’t
surround the name with quotation marks, then Notepad might add .txt to
the file’s name (turning raw123.01.dataFile into raw123.01.dataFile.
txt). A similar issue applies to the Macintosh’s TextEdit program. By default,
TextEdit adds the .rtf extension to each new file. To override the .rtf
default for a particular file, select Format➪Make Plain Text before saving the
file. Then, when you save the file, TextEdit offers to add the .txt extension
to the name of the file. In the Save As dialog box, if you don’t want the file’s
name to end in .txt, uncheck the checkbox labeled If no extension is
provided, use ".txt".

263 Chapter 13: Piles of Files: Dealing with Information Overload

Running the code
To have Eclipse run the code, do the same thing you do with any other Java
program. Select the project you want to run (project 13-02 in this example).
Then choose Run➪Run As➪Java Application.

When you run the program in Listing 13-2, no text appears in Eclipse’s
Console view. This total lack of any noticeable output gives some people
the willies. The truth is, a program like the one in Listing 13-2 does all its
work behind the scenes. The program has no statements that read from the
keyboard and has no statements that print to the screen. So, if you have a
very loud hard drive, you may hear a little chirping sound when you choose
Run➪Run As➪Java Application, but you won’t type any program input, and
you won’t see any program output.

The program sends all its output to a file on your hard drive. So what do you
do to see the file’s contents?

Viewing the output file
To see the output of the program in Listing 13-2, follow these steps:

 1. In the Project Explorer, select the 13-02 project branch.

 2. In the main menu, choose File➪Refresh.

 3. In the Project Explorer, expand the 13-02 project branch.

 A new file named cookedData.txt appears in the Package Explorer
tree (in the 13-02 project).

 4. Double-click the cookedData.txt branch in the Package Explorer
tree.

 The contents of cookedData.txt appear in an Eclipse editor. (See
Figure 13-5.)

Figure 13-5:
Viewing an
output file.

264 Part III: Controlling the Flow

Troubleshooting problems with disk files
When you run the code in Listing 13-2, the computer executes new
Scanner(new File("rawData.txt")). If the Java virtual machine
can’t find the rawData.txt file, you see a message like the one shown in
Figure 13-6. This error message can be very frustrating. In many cases, you
know darn well that there’s a rawData.txt file on your hard drive. The
stupid computer simply can’t find it.

Figure 13-6:
The com-

puter can’t
find your

file.

There’s no quick, surefire way to fix this problem. But you should always
check the following things first:

 ✓ Check again for a file named rawData.txt.

 Open My Computer (on Windows) or Finder (on a Mac) and poke around
for a file with that name.

 The filenames displayed in My Computer and Finder can be misleading.
You may see the name rawData, even though the file’s real name is
rawData.txt. To fix this problem once and for all, refer to Chapter 2.

 ✓ Check the spelling of the file’s name.

 Make sure that the name in your program is exactly the same as the
name of the file on your hard drive. Just one misplaced letter can keep
the computer from finding a file.

 ✓ If you use Linux (or a flavor of UNIX other than Mac OS X), check the
capitalization of the file’s name.

 In Linux, and in many versions of UNIX, the difference between upper-
case and lowercase can baffle the computer.

 ✓ Check that the file is in the correct directory.

 Sure, you have a file named rawData.txt. But don’t expect your Java
program to look in every folder on your hard drive to find the file. How
do you know which folder should house files like rawData.txt?

265 Chapter 13: Piles of Files: Dealing with Information Overload

 Here’s how it works: Each Eclipse project has its own folder on your com-
puter’s hard drive. You see the 13-02 project folder and its src subfolder
in Figure 13-5. But in Figure 13-7, Windows Explorer shows the 13-02
folder, its src subfolder, and its other subfolders named .settings and
bin. (Mac users can see the same subfolders in a Finder window.)

 The src, bin and .settings folders contain files of their own. But in
Figure 13-7, the rawData.txt and cookedData.txt files are immedi-
ately inside the 13-02 project folder. In other words, the rawData.txt
and cookedData.txt files live in the root of the 13-02 project folder.

 When you run this section’s example, the rawData.txt file should be
in the root of the 13-02 project folder on your hard drive. That’s why, in
Step 1 of the "Creating an input file" section, I remind you to select the
13-02 project folder and not the project’s src subfolder.

 Figure 13-7 shows input and output files in the root of their Eclipse proj-
ect. But in general, file locations can be tricky, especially if you switch
from Eclipse to an unfamiliar IDE. The general rule (about putting input
and output files immediately inside a project directory) may not apply in
other programming environments.

 So here’s a trick you can use: Whatever IDE you use (or even if you create
Java programs without an IDE), run this stripped-down version of the
code in Listing 13-2:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class JustWrite {

 public static void main(String args[])
 throws FileNotFoundException {

 PrintStream diskWriter =
 new PrintStream("cookedData.txt");
 diskWriter.println(99.75);

 diskWriter.close();
 }
}

 This program has no need for a stinking rawData.txt file. If you run
this code and get no error messages, search your hard drive for this pro-
gram’s output (the cookedData.txt file). Note the name of the folder
that contains the cookedData.txt file. When you put rawData.txt
in this same folder, any problem you had running the Listing 13-2 code
should go away.

266 Part III: Controlling the Flow

Figure 13-7:
The con-

tents of the
13-02 proj-

ect folder on
your com-

puter’s hard
drive.

 ✓ Check the rawData.txt file’s content.

 It never hurts to peek inside the rawData.txt file and make sure that
the file contains the numbers 19.95 5. If rawData.txt doesn’t appear
in Eclipse’s editor area, find the Listing 13-2 project (the project named
13-02) in the Package Explorer. Double-clicking the project’s rawData.
txt branch makes that file appear in Eclipse’s editor area.

 By default, Java’s Scanner class looks for blank spaces between input
values. So this example’s rawData.txt file should contain 19.95 5,
not 19.955 and not 19.95,5.

 The Scanner class looks for any kind of whitespace between the values.
These whitespace characters may include blank spaces, tabs, and new-
lines. So, for example, the rawData.txt file may contain 19.95 5 (with
several blank spaces between 19.95 and 5), or it may have 19.95 and 5
on two separate lines.

Writing a Disk-Oriented Program
Listing 13-2 is very much like Listing 13-1. In fact, you can go from Listing 13-1
to Listing 13-2 with some simple editing. Here’s how:

 ✓ Add the following import declarations to the beginning of your code:

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

 ✓ Add the following throws clause to the method header:

throws FileNotFoundException

267 Chapter 13: Piles of Files: Dealing with Information Overload

 ✓ In the call to new Scanner, replace System.in with a call to new
File as follows:

Scanner aVariableName =
 new Scanner(new File("inputFileName"))

 ✓ Create a PrintStream for writing output to a disk file:

PrintStream anotherVariableName =
 new PrintStream("outputFileName");

 ✓ Use the Scanner variable name in calls to nextInt, nextLine, and
so on.

 For example, to go from Listing 13-1 to Listing 13-2, I change

unitPrice = keyboard.nextDouble();
quantity = keyboard.nextInt();

 to

unitPrice = diskScanner.nextDouble();
quantity = diskScanner.nextInt();

 ✓ Use the PrintStream variable name in calls to print and println.

 For example, to go from Listing 13-1 to Listing 13-2, I change

System.out.println(total);

 to

diskWriter.println(total);

 ✓ Use the Scanner variable name in the call to close.

 For example, to go from Listing 13-1 to Listing 13-2, I change

keyboard.close();

 to

diskScanner.close();

 ✓ Use the PrintStream variable name in a call to close.

 For example, to go from Listing 13-1 to Listing 13-2, I add

diskWriter.close();

 at the end of the main method.

268 Part III: Controlling the Flow

Reading from a file
All the Scanner methods can read from existing disk files. For example, to
read a word from a file named mySpeech, use code of the following kind:

Scanner diskScanner =
 new Scanner(new File("mySpeech"));

String oneWord = diskScanner.next();

To read a character from a file named letters.dat and then display the
character on the screen, you can do something like this:

Scanner diskScanner =
 new Scanner(new File("letters.dat"));

System.out.println(
 diskScanner.findWithinHorizon(".",0).charAt(0));

 Notice how I read from a file named mySpeech, not mySpeech.txt or
mySpeech.doc. Anything that you put after the dot is called a filename exten-
sion, and for a file full of numbers and other data, the filename extension is
optional. Sure, a Java program must be called something.java, but a data
file can be named mySpeech.txt, mySpeech.reallymine.allmine, or
just mySpeech. As long as the name in your new File call is the same as the
filename on your computer’s hard drive, everything is okay.

Writing to a file
The print and println methods can write to disk files. Here are some
examples:

 ✓ During a run of the code in Listing 13-2, the variable total stores the
number 99.75. To deposit 99.75 into the cookedData.txt file, you
execute

diskWriter.println(total);

 This println call writes to a disk file because of the following line in
Listing 13-2:

PrintStream diskWriter =
 new PrintStream("cookedData.txt");

 ✓ In another version of the program, you may decide not to use a total
variable. To write 99.75 to the cookedData.txt file, you can call

diskWriter.println(unitPrice * quantity);

269 Chapter 13: Piles of Files: Dealing with Information Overload

 ✓ To display OK on the screen, you can make the following method call:

System.out.print("OK");

 To write OK to a file named approval.txt, you can use the following
code:

PrintStream diskWriter =
 new PrintStream("approval.txt");

diskWriter.print("OK");

 ✓ You may decide to write OK as two separate characters. To write to the
screen, you can make the following calls:

System.out.print('O');
System.out.print('K');

 And to write OK to the approval.txt file, you can use the following
code:

PrintStream diskWriter =
 new PrintStream("approval.txt");

diskWriter.print('O');
diskWriter.print('K');

 ✓ Like their counterparts for System.out, the disk-writing print and
println methods differ in their end-of-line behaviors. For example, you
want to display the following text on the screen:

Hankees Socks
7 3

 To do this, you can make the following method calls:

System.out.print("Hankees ");
System.out.println("Socks");
System.out.print(7);
System.out.print(" ");
System.out.println(3);

 To plant the same text into a file named scores.dat, you can use the
following code:

PrintStream diskWriter =
 new PrintStream("scores.dat");

diskWriter.print("Hankees ");
diskWriter.println("Socks");
diskWriter.print(7);
diskWriter.print(" ");
diskWriter.println(3);

270 Part III: Controlling the Flow

Name that file
What if a file that contains data isn’t in your program’s project folder? If that’s the case, when you
call new File, the file’s name must include folder names. For example, in Windows, your
TallyBudget.java program might be in your c:\Users\MyUserName\
workspace\13-09 folder, and a file named totals might be in a folder named c:\
advertisements. (See the following figure.)

Then, to refer to the totals file, you include the folder name, the filename, and (to be on the safe
side) the drive letter:

Scanner diskScanner = new Scanner
(new File("c:\\advertisements\\totals"));

Notice that I use double backslashes to separate the drive letter, the folder name, and the filename.
To find out why, look at the sidebar entitled “Escapism” in Chapter 12. The string "\totals" with a
single backslash stands for a tab, followed by otals. But in this example, the file’s name is totals,
not otals. With a single backslash, the name ...advertisements\totals" would not work
correctly.

Inside quotation marks, you use the double backslash to indicate what would usually be a
single backslash. So the string "c:\\advertisements\\totals" stands for c:\
advertisements\totals. That’s good because c:\advertisements\totals is the
way you normally refer to a file in Windows.

If you want to sidestep all this backslash confusion, you can use forward slashes to specify each
file’s location. Windows responds exactly the same way to new File("c:\\advertisements\\
totals") and to new File("c:/advertisements/totals"). And if you use UNIX, Linux, or a
Macintosh, the double backslash nonsense doesn’t apply to you. Just write

Scanner diskScanner =
 new Scanner (new File(
 "/Users/me/advertisements/totals"));

or something similar that reflects your system’s directory structure.

271 Chapter 13: Piles of Files: Dealing with Information Overload

Writing, Rewriting, and Re-rewriting
Given my mischievous ways, I tried a little experiment. I asked myself what
would happen if I ran the same file-writing program more than once. So I
created a tiny program (the program in Listing 13-5), and I ran the program
twice. Then I examined the program’s output file. The output file (shown in
Figure 13-8) contains only two letters.

Listing 13-5: A Little Experiment

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class WriteOK {

 public static void main(String args[])
 throws FileNotFoundException {

 PrintStream diskWriter =
 new PrintStream(new File("approval.txt"));

 diskWriter.print ('O');
 diskWriter.println('K');

 diskWriter.close();
 }
}

Figure 13-8:
Testing the

waters.

Here’s the sequence of events from the start to the end of the experiment:

 1. Before I run the code in Listing 13-5, my computer’s hard drive has no
approval.txt file.

 That’s okay. Every experiment has to start somewhere.

272 Part III: Controlling the Flow

 2. I run the code in Listing 13-5.

 The call to new PrintStream in Listing 13-5 creates a file named
approval.txt. Initially, the new approval.txt file contains no
characters. Later in Listing 13-5, calls to print and println put
characters in the file. So, after running the code, the approval.txt
file contains two letters: the letters OK.

 3. I run the code from Listing 13-5 a second time.

 At this point, I could imagine seeing OKOK in the approval.txt file.
But that’s not what I see in Figure 13-8. After running the code twice, the
approval.txt file contains just one OK. Here’s why:

	 •	The	call	to	new PrintStream in Listing 13-5 deletes my existing
approval.txt file. The call creates a new, empty approval.txt
file.

	 •	After	creating	a	new	approval.txt file, the print method call
drops the letter O into the new file.

	 •	The	println method call adds the letter K to the same
approval.txt file.

So that’s the story. Each time you run the program, it trashes whatever
approval.txt file is already on the hard drive. Then the program adds
data to a newly created approval.txt file.

Chapter 14

Creating Loops within Loops
In This Chapter
▶ Analyzing loop strategies

▶ Diagnosing loop problems

▶ Creating nested loops

I
f you’re an editor at Wiley Publishing, please don’t read the next few para-
graphs. In the next few paragraphs, I give away an important trade secret

(something you really don’t want me to do).

I’m about to describe a surefire process for writing a best-selling For Dummies
book. Here’s the process:

Write several words to create a sentence. Do this several times to create a
paragraph.

Repeat the following to form a paragraph:
 Repeat the following to form a sentence:
 Write a word.

Repeat the previous instructions several times to make a section. Make several
sections and then make several chapters.

Repeat the following to form a best-selling book
in the For Dummies series:
 Repeat the following to form a chapter:
 Repeat the following to form a section:
 Repeat the following to form a paragraph:
 Repeat the following to form a sentence:
 Write a word.

This process involves a loop within a loop within a loop within a loop within
a loop. It’s like a verbal M.C. Escher print. Is it useful, or is it frivolous?

274 Part III: Controlling the Flow

Well, in the world of computer programming, this kind of thing happens all
the time. Most five-layered loops are hidden behind method calls, but two-
layered loops within loops are everyday occurrences. So this chapter tells
you how to compose a loop within a loop. It’s very useful stuff.

By the way, if you’re a Wiley Publishing editor, you can start reading again
from this point onward.

Paying Your Old Code a Little Visit
The program back in Listing 12-5 extracts a username from an e-mail address.
For example, the program reads

John@BurdBrain.com

from the keyboard, and writes

John

to the screen. Let me tell you . . . in this book, I have some pretty lame excuses
for writing programs, but this simple e-mail example tops the list! Why would
you want to type something on the keyboard, only to have the computer dis-
play part of what you typed? There must be a better use for code of this kind.

Sure enough, there is. The BurdBrain.com network administrator has a list
of 10,000 employees’ e-mail addresses. More precisely, the administrator’s
hard drive has a file named email.txt. This file contains 10,000 e-mail
addresses, with one address on each line, as shown in Figure 14-1.

Figure 14-1:
A list of

e-mail
addresses.

The company’s e-mail software has an interesting feature. To send e-mail
within the company, you don’t need to type an entire e-mail address. For
example, to send e-mail to John, you can type the username John instead of
John@BurdBrain.com. (This @BurdBrain.com part is called the host name.)

So the company’s network administrator wants to distill the content of the
email.txt file. She wants a new file, usernames.txt, that contains user-
names with no host names, as shown in Figure 14-2.

275 Chapter 14: Creating Loops within Loops

Figure 14-2:
Usernames

extracted
from the list

of e-mail
addresses.

Reworking some existing code
To solve the administrator’s problem, you need to modify the code in
Listing 12-5. The new version gets an e-mail address from a disk file and
writes a username to another disk file. The new version is in Listing 14-1.

Listing 14-1: From One File to Another

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListOneUsername {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("email.txt"));
 PrintStream diskWriter =
 new PrintStream("usernames.txt");
 char symbol;

 symbol =
 diskScanner.findWithinHorizon(".",0).charAt(0);

 while (symbol != '@') {
 diskWriter.print(symbol);
 symbol =
 diskScanner.findWithinHorizon(".",0).charAt(0);
 }

 diskWriter.println();

 diskScanner.close();
 diskWriter.close();
 }
}

276 Part III: Controlling the Flow

Listing 14-1 does almost the same thing as its forerunner in Listing 12-5. The
only difference is that the code in Listing 14-1 doesn’t interact with the user.
Instead, the code in Listing 14-1 interacts with disk files.

Running your code
Here’s how you run the code in Listing 14-1:

 1. Create a file named email.txt in your Eclipse project directory.

 In the email.txt file, put just one e-mail address. Any address will do,
as long as the address contains an @ sign.

 2. Put the ListOneUsername.java file (the code from Listing 14-1) in
your project’s src/(default package) directory.

 3. Run the code in Listing 14-1.

 When you run the code, you see nothing interesting in the Console view.
What a pity!

 4. View the contents of the usernames.txt file.

 If your email.txt file contains John@BurdBrain.com, the usernames.
txt file contains John.

For more details on any of these steps, see the discussion accompanying
Listings 13-2, 13-3, and 13-4 in Chapter 13. (The discussion is especially useful
if you don’t know how to view the usernames.txt file’s contents.)

Creating Useful Code
The previous section describes a network administrator’s problem — creating
a file filled with usernames from a file filled with e-mail addresses. The code in
Listing 14-1 solves part of the problem — it extracts just one e-mail address.
That’s a good start, but to get just one username, you don’t need a computer
program. A pencil and paper does the trick.

So don’t keep the network administrator waiting any longer. In this section,
you develop a program that processes dozens, hundreds, and even thou-
sands of e-mail addresses from a file on your hard drive.

First, you need a strategy to create the program. Take the statements in
Listing 14-1 and run them over and over again. Better yet, have the statements
run themselves over and over again. Fortunately, you already know how to do
something over and over again: You use a loop. (See Chapter 12 for the basics
on loops.)

277 Chapter 14: Creating Loops within Loops

So here’s the strategy: Take the statements in Listing 14-1 and enclose them
in a larger loop:

while (not at the end of the email.txt file) {
 Execute the statements in Listing 14-1
}

Looking back at the code in Listing 14-1, you see that the statements in that
code have a while loop of their own. So this strategy involves putting one
loop inside another loop:

while (not at the end of the email.txt file) {
 //Blah-blah

 while (symbol != '@') {
 //Blah-blah-blah
 }

 //Blah-blah-blah-blah
}

Because one loop is inside the other, they’re called nested loops. The old loop
(the symbol != '@' loop) is the inner loop. The new loop (the end-of-file
loop) is called the outer loop.

Checking for the end of a file
Now all you need is a way to test the loop’s condition. How do you know
when you’re at the end of the email.txt file?

The answer comes from Java’s Scanner class. This class’s hasNext method
answers true or false to the following question:

Does the email.txt file have anything to read in it (beyond what you’ve
already read)?

If the program’s findWithinHorizon calls haven’t gobbled up all the char-
acters in the email.txt file, the value of diskScanner.hasNext() is
true. So, to keep looping while you’re not at the end of the email.txt file,
you do the following:

while (diskScanner.hasNext()) {
 Execute the statements in Listing 14-1
}

278 Part III: Controlling the Flow

The first realization of this strategy is in Listing 14-2.

Listing 14-2: The Mechanical Combining of Two Loops

/*
 * This code does NOT work (but
 * you learn from your mistakes).
 */

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListAllUsernames {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("email.txt"));
 PrintStream diskWriter =
 new PrintStream("usernames.txt");
 char symbol;

 while (diskScanner.hasNext()) {
 symbol = diskScanner.findWithinHorizon(".",0)
 .charAt(0);

 while (symbol != '@') {
 diskWriter.print(symbol);
 symbol = diskScanner.findWithinHorizon(".",0)
 .charAt(0);
 }

 diskWriter.println();
 }

 diskScanner.close();
 diskWriter.close();
 }
}

When you run the code in Listing 14-2, you get the disappointing response
shown in Figure 14-3.

279 Chapter 14: Creating Loops within Loops

Figure 14-3:
You goofed.

How it feels to be a computer
What’s wrong with the code in Listing 14-2? To find out, I role-play the com-
puter. “If I were a computer, what would I do when I execute the code in
Listing 14-2?”

The first several things that I’d do are pictured in Figure 14-4. I would read the
J in John, then write the J in John, and then read the letter o (also in John).

Figure 14-4:
Role-playing

the code in
Listing 14-2.

After a few trips through the inner loop, I’d get the @ sign in John@
BurdBrain.com, as shown in Figure 14-5.

Figure 14-5:
Reaching

the end
of the

username.

280 Part III: Controlling the Flow

Finding this @ sign would jump me out of the inner loop and back to the top
of the outer loop, as shown in Figure 14-6.

Figure 14-6:
Leaving the
inner loop.

I’d get the B in BurdBrain, and sail back into the inner loop. But then (horror
of horrors!) I’d write that B to the usernames.txt file (see Figure 14-7).

Figure 14-7:
The error of

my ways.

There’s the error! You don’t want to write host names to the usernames.txt
file. When the computer found the @ sign, it should have skipped past the
rest of John’s e-mail address.

At this point, you have a choice. You can jump straight to the corrected code
in Listing 14-3, or you can read on to find out about the error message in
Figure 14-3.

Why the computer accidentally
pushes past the end of the file
Ah! You’re wondering why Figure 14-3 has that nasty error message.

281 Chapter 14: Creating Loops within Loops

I role-play the computer to help me figure out what’s going wrong. Imagine
that I’ve already role-played the steps in Figure 14-7. I shouldn’t process the
first letter B (let alone the entire BurdBrain.com host name) with the inner
loop. But unfortunately, I do.

I keep running and processing more e-mail addresses. When I get to the end
of the last e-mail address, I grab the m in BurdBrain.com and go back to test
for an @ sign, as shown in Figure 14-8.

Figure 14-8:
The

 journey’s
last leg.

Now I’m in trouble. This last m certainly isn’t an @ sign. So I jump into the inner
loop and try to get yet another character (see Figure 14-9). The email.txt
file has no more characters, so Java sends an error message to the computer
screen. (The NullPointerException error message is back in Figure 14-3.)

Figure 14-9:
Trying to

read past
the end of

the file.

 Here’s why I get a NullPointerException: The email.txt file has no
more characters, so the call to findWithinHorizon(".",0) comes up
empty. (There’s nothing to find.) In Java, a more precise way of describing that
emptiness is with the word null. The call findWithinHorizon(".",0) is
null, so pointing to a character that was found (charAt(0)) is a fruitless
endeavor. Thus, Java displays a NullPointerException message.

282 Part III: Controlling the Flow

Solving the problem
Listing 14-3 has the solution to the problem described with Figures 14-1 and 14-2.
The code in this listing is almost identical to the code in Listing 14-2. The only
difference is the added call to nextLine. When the computer reaches an @
sign, this nextLine call swallows the rest of the input line without actually
tasting it. (The nextLine call gets the rest of the e-mail address, but doesn’t
output that part of the email address. The idea works because each e-mail
address is on its own separate line.) After gulping down @BurdBrain.com, the
computer moves gracefully to the next line of input.

Listing 14-3: That’s Much Better!

/*
 * This code is correct!!
 */

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintStream;

class ListAllUsernames {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("email.txt"));
 PrintStream diskWriter =
 new PrintStream("usernames.txt");
 char symbol;

 while (diskScanner.hasNext()) {
 symbol = diskScanner.findWithinHorizon(".",0)
 .charAt(0);

 while (symbol != '@') {
 diskWriter.print(symbol);
 symbol = diskScanner.findWithinHorizon(".",0)
 .charAt(0);
 }

 diskScanner.nextLine();
 diskWriter.println();
 }

 diskScanner.close();
 diskWriter.close();
 }
}

283 Chapter 14: Creating Loops within Loops

To run the code in Listing 14-3, you need an email.txt file — a file like
the one shown in Figure 14-1. In the email.txt file, type several e-mail
addresses. Any addresses will do, as long as each address contains an @
sign and each address is on its own separate line. Save the email.txt file
in your project directory along with the ListAllUsernames.java file (the
code from Listing 14-3). For more details, see the discussion accompanying
Listings 13-2, 13-3, and 13-4 in Chapter 13.

With Listing 14-3, you’ve reached an important milestone. You’ve analyzed
a delicate programming problem and found a complete, working solution.
The tools you used included thinking about strategies and role-playing the
computer. As time goes on, you can use these tools to solve bigger and better
problems.

284 Part III: Controlling the Flow

Chapter 15

The Old Runaround
In This Chapter
▶ Creating repetitive actions

▶ Improving your nesting techniques

▶ Insisting on a valid response from the user

▶ Looping through enumerated values

I
 remember it distinctly — the sense of dread I would feel on the way to
Aunt Edna’s house. She was a kind old woman, and her intentions were

good. But visits to her house were always so agonizing.

First, we’d sit in the living room and talk about other relatives. That was okay,
as long as I understood what people were talking about. Sometimes, the gossip
would be about adult topics, and I’d become very bored.

After all the family chatter, my father would help Aunt Edna with her bills. That
was fun to watch because Aunt Edna had a genetically inherited family ailment.
Like me and many of my ancestors, Aunt Edna couldn’t keep track of paperwork
to save her life. It was as if the paper had allergens that made Aunt Edna’s skin
crawl. After ten minutes of useful bill paying, my father would find a mistake, an
improper tally, or something else in the ledger that needed attention. He’d ask
Aunt Edna about it, and she’d shrug her shoulders. He’d become agitated trying
to track down the problem, while Aunt Edna rolled her eyes and smiled with
ignorant satisfaction. It was great entertainment.

Then, when the bill paying was done, we’d sit down to eat dinner. That’s when
I would remember why I dreaded these visits. Dinner was unbearable. Aunt
Edna believed in Fletcherism — a health movement whose followers chewed
each mouthful of food 100 times. The more devoted followers used a chart,
with a different number for the mastication of each kind of food. The minimal
number of chews for any food was 32 — one chomp for each tooth in your
mouth. People who did this said they were “Fletcherizing.”

286 Part III: Controlling the Flow

Mom and Dad thought the whole Fletcher business was silly, but they
respected Aunt Edna and felt that people her age should be humored, not
defied. As for me, I thought I’d explode from the monotony. Each meal
lasted forever. Each mouthful was an ordeal. I can still remember my
mantra — the words I’d say to myself without meaning to do so:

I've chewed 0 times so far.
Have I chewed 100 times yet? If not, then
 Chew!
 Add 1 to the number of times that I've chewed.
 Go back to "Have I chewed"
 to find out if I'm done yet.

Repeating Statements a Certain Number
of Times (Java for Statements)

Life is filled with examples of counting loops. And computer programming
mirrors life (. . . or is it the other way around?). When you tell a computer
what to do, you’re often telling the computer to print three lines, process
ten accounts, dial a million phone numbers, or whatever. Because counting
loops are so common in programming, the people who create programming
languages have developed statements just for loops of this kind. In Java, the
statement that repeats something a certain number of times is called a for
statement. An example of a for statement is in Listing 15-1.

Listing 15-1: Horace Fletcher’s Revenge

import static java.lang.System.out;

class AuntEdnaSettlesForTen {

 public static void main(String args[]) {

 for (int count = 0; count < 10; count++) {
 out.print("I've chewed ");
 out.print(count);
 out.println(" time(s).");
 }

 out.println("10 times! Hooray!");
 out.println("I can swallow!");
 }
}

287 Chapter 15: The Old Runaround

Figure 15-1 shows you what you get when you run the program of Listing 15-1:

 ✓ The for statement in Listing 15-1 starts by setting the count variable
equal to 0.

 ✓ Then the for statement tests to make sure that count is less than 10
(which it certainly is).

 ✓ Then the for statement dives ahead and executes the printing state-
ments between the curly braces. At this early stage of the game, the
computer prints I’ve chewed 0 time(s).

 ✓ Then the for statement executes count++ — that last thing inside the
for statement’s parentheses. This last action adds 1 to the value of count.

Figure 15-1:
Chewing ten

times.

This ends the first iteration of the for statement in Listing 15-1. Of course,
this loop has more to it than just one iteration:

 ✓ With count now equal to 1, the for statement checks again to make
sure that count is less than 10. (Yes, 1 is smaller than 10.)

 ✓ Because the test turns out okay, the for statement marches back into
the curly braced statements and prints I’ve chewed 1 time(s) on
the screen.

 ✓ Then the for statement executes that last count++ inside its parenthe-
ses. The statement adds 1 to the value of count, increasing the value of
count to 2.

And so on. This whole thing keeps being repeated over and over again until,
after ten iterations, the value of count finally reaches 10. When this happens,
the check for count being less than 10 fails, and the loop’s execution ends.

288 Part III: Controlling the Flow

The computer jumps to whatever statement comes immediately after the for
statement. In Listing 15-1, the computer prints 10 times! Hooray! I can
swallow! The whole process is illustrated in Figure 15-2.

Figure 15-2:
The action
of the for

loop in
Listing 15-1.

The anatomy of a for statement
A typical for statement looks like this:

for (Initialization; Condition; Update) {
 Statements
}

After the word for, you put three things in parentheses: an initialization, a
condition, and an update.

Each of the three items in parentheses plays its own distinct role:

 ✓ Initialization: The initialization is executed once, when the run of your
program first reaches the for statement.

 ✓ Condition: The condition is tested several times (at the start of each
iteration).

 ✓ Update: The update is also evaluated several times (at the end of each
iteration).

289 Chapter 15: The Old Runaround

If it helps, think of the loop as if its text is shifted all around:

//This is NOT real code
int count = 0
for count < 0 {
 out.print("I've chewed ");
 out.print(count);
 out.println(" time(s).");
 count++;
}

You can’t write a real for statement this way. (The compiler would throw
code like this right into the garbage can.) Even so, this is the order in which
the parts of the for statement are executed.

 The first line of a for statement (the word for followed by stuff in parenthe-
ses) isn’t a complete statement. So you almost never put a semicolon after the
stuff in parentheses. If you make a mistake and type a semicolon,

// DON'T DO THIS:
for (int count = 0; count < 10; count++); {

you usually put the computer into a do-nothing loop. The computer counts to
itself from 0 to 9. After counting, the computer executes whatever statements
come immediately after the open curly brace. (The loop ends at the semico-
lon, so the statements after the open curly brace aren’t inside the loop.)

Initializing a for loop
Look at the first line of the for loop in Listing 15-1 and notice the declaration
int count = 0. That’s something new. When you create a for loop, you
can declare a variable (like count) as part of the loop initialization.

If you declare a variable in the initialization of a for loop, you can’t use
that variable outside the loop. For example, in Listing 15-1, try putting out.
println(count) after the end of the loop:

//This code does not compile.
for (int count = 0; count < 10; count++) {
 out.print("I've chewed ");
 out.print(count);
 out.println(" time(s).");
}

out.print(count); //The count variable doesn't
 // exist here.

290 Part III: Controlling the Flow

With this extra reference to the count variable, the compiler gives you an
error message. You can see the message in Figure 15-3. If you’re not experi-
enced with for statements, the message may surprise you. “Whadaya mean
‘count cannot be resolved to a variable’? There’s a count variable declara-
tion just four lines above that statement.” Ah, yes. But the count variable is
declared in the for loop’s initialization. Outside the for loop, that count
variable doesn’t exist.

Figure 15-3:
What count

variable?
I don’t see

a count
variable.

To use a variable outside of a for statement, you have to declare that vari-
able outside the for statement. You can even do this with the for state-
ment’s counting variable. Listing 15-2 has an example.

Listing 15-2: Using a Variable Declared Outside of a for Loop

import static java.lang.System.out;

class AuntEdnaDoesItAgain {

 public static void main(String args[]) {
 int count;

 for (count = 0; count < 10; count++) {
 out.print("I've chewed ");
 out.print(count);
 out.println(" time(s).");
 }

 out.print(count);
 out.println(" times! Hooray!");
 out.println("I can swallow!");
 }
}

291 Chapter 15: The Old Runaround

A run of the code in Listing 15-2 looks exactly like the run for Listing 15-1. The
run is pictured in Figure 15-1. Unlike its predecessor, Listing 15-2 enjoys
the luxury of using the count variable to display the number 10. It can do
this because in Listing 15-2, the count variable belongs to the entire main
method, and not to the for loop alone.

Notice the words for (count = 0 in Listing 15-2. Because count is declared
before the for statement, you don’t declare count again in the for state-
ment’s initialization. I tried declaring count twice, as in the following code:

Versatile looping statements
If you were stuck on a desert island with only
one kind of loop, what kind would you want to
have? The answer is, you can get along with
any kind of loop. The choice between a while
loop and a for loop is about the code’s style
and efficiency. It’s not about necessity.

Anything that you can do with a for loop, you
can do with a while loop as well. Consider,
for example, the for loop in Listing 15-1. Here’s
how you can achieve the same effect with a
while loop:

int count = 0;
while (count < 10) {
 out.print("I've chewed ");
 out.print(count);
 out.println(" time(s).");
 count++;
}

In the while loop, you have explicit state-
ments to declare, initialize, and increment the
count variable.

The same kind of trick works in reverse.
Anything that you can do with a while loop,
you can do with a for loop as well. But turn-
ing certain while loops into for loops seems
strained and unnatural. Consider a while loop
from Listing 12-2:

while (total < 21) {
 card =
 myRandom.nextInt(10) + 1;

 total += card;
 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

Turning this loop into a for loop means wast-
ing most of the stuff inside the for loop’s
parentheses:

for (; total < 21 ;) {
 card =
 myRandom.nextInt(10) + 1;
 total += card;
 System.out.print(card);
 System.out.print(" ");
 System.out.println(total);
}

The preceding for loop has a condition, but
it has no initialization and no update. That’s
okay. Without an initialization, nothing special
happens when the computer first enters the
for loop. And without an update, nothing spe-
cial happens at the end of each iteration. It’s
strange, but it works.

Usually, when you write a for statement,
you’re counting how many times to repeat
something. But, in truth, you can do just about
any kind of repetition with a for statement.

292 Part III: Controlling the Flow

//This does NOT work:
int count;

for (int count = 0; count < 10; count++) {
 ...etc.

And Eclipse told me to clean up my act:

Duplicate local variable count ^

Using Nested for Loops
Because you’re reading Beginning Programming with Java For Dummies, 4th
Edition, I assume that you manage a big hotel. The next chapter tells you
everything you need to know about hotel management. But before you begin
reading that chapter, you can get a little preview in this section.

I happen to know that your hotel has 9 floors, and each floor of your hotel
has 20 rooms. On this sunny afternoon, someone hands you a flash drive
containing a file full of numbers. You copy this hotelData file to your hard
drive and then display the file in Eclipse’s editor. You see the stuff shown in
Figure 15-4.

Figure 15-4:
A file con-

taining hotel
occupancy

data.

This file gives the number of guests in each room. For example, at the start
of the file, you see 2 1 2. This means that, on the first floor, Room 1 has
2 guests, Room 2 has 1 guest, and Room 3 has 2 guests. After reading 20 of
these numbers, you see 0 2 2. So, on the second floor, Room 1 has 0 guests,
Room 2 has 2 guests, and Room 3 has 2 guests. The story continues until the
last number in the file. According to that number, Room 20 on the ninth floor
has 4 guests.

You’d like a more orderly display of these numbers — a display of the kind in
Figure 15-5. So you whip out your keyboard to write a quick Java program.

293 Chapter 15: The Old Runaround

Figure 15-5:
A readable

display of
the data in

Figure 15-4.

As in some other examples, you decide which statements go where by asking
yourself how many times each statement should be executed. For starters,
the display in Figure 15-5 has 9 lines, and each line has 20 numbers:

for (each of 9 floors)
 for (each of 20 rooms on a floor)
 get a number from the file and
 display the number on the screen.

So your program has a for loop within a for loop — a pair of nested for
loops.

Next, you notice how each line begins in Figure 15-5. Each line contains the
word Floor, followed by the floor number. Because this Floor display occurs
only 9 times in Figure 15-5, the statements to print this display belong in the
for each of 9 floors loop (and not in the for each of 20 rooms
loop). The statements should be before the for each of 20 rooms loop
because this Floor display comes once before each line’s 20-number display:

for (each of 9 floors)
 display "Floor" and the floor number,
 for (each of 20 rooms on a floor)
 get a number from the file and
 display the number on the screen.

You’re almost ready to write the code. But there’s one detail that’s easy to
forget. (Well, it’s a detail that I always forget.) After displaying 20 numbers, the
program advances to a new line. This new-line action happens only 9 times
during the run of the program, and it always happens after the program
 displays 20 numbers:

for (each of 9 floors)
 display "Floor" and the floor number,
 for (each of 20 rooms on a floor)
 get a number from the file and
 display the number on the screen,
 Go to the next line.

294 Part III: Controlling the Flow

That does it. That’s all you need. The code to create the display of Figure 15-5
is in Listing 15-3.

Listing 15-3: Hey! Is This a For-by-For?

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

class DisplayHotelData {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("hotelData"));

 for (int floor = 1; floor <= 9; floor++) {
 out.print("Floor ");
 out.print(floor);
 out.print(": ");

 for (int roomNum = 1; roomNum <= 20; roomNum++) {
 out.print(diskScanner.nextInt());
 out.print(' ');
 }

 out.println();
 }

 diskScanner.close();
 }
}

The code in Listing 15-3 has the variable floor going from 1 to 9 and has the
variable roomNum going from 1 to 20. Because the roomNum loop is inside
the floor loop, the writing of 20 numbers happens 9 times. That’s good. It’s
exactly what I want.

Repeating Until You Get What You
Need (Java do Statements)

I introduce Java’s while loop in Chapter 12. When you create a while loop,
you write the loop’s condition first. After the condition, you write the code
that gets repeatedly executed.

295 Chapter 15: The Old Runaround

while (Condition) {
 Code that gets repeatedly executed
}

This way of writing a while statement is no accident. The look of the state-
ment emphasizes an important point — that the computer always checks the
condition before executing any of the repeated code.

If the loop’s condition is never true, then the stuff inside the loop is never
executed — not even once. In fact, you can easily cook up a while loop
whose statements are never executed (although I can’t think of a reason why
you would ever want to do it):

//This code doesn't print anything:
int twoPlusTwo = 2 + 2;
while (twoPlusTwo == 5) {
 System.out.println("Are you kidding?");
 System.out.println("2+2 doesn't equal 5.");
 System.out.print ("Everyone knows that");
 System.out.println(" 2+2 equals 3.");
}

In spite of this silly twoPlusTwo example, the while statement turns out to
be the most useful of Java’s looping constructs. In particular, the while loop
is good for situations in which you must look before you leap. For example:
“While money is in my account, write a mortgage check every month.” When
you first encounter this statement, if your account has a zero balance, you
don’t want to write a mortgage check — not even one check.

But at times (not many), you want to leap before you look. In a situation
when you’re asking the user for a response, maybe the user’s response makes
sense, but maybe it doesn’t. Maybe the user’s finger slipped, or perhaps the
user didn’t understand the question. In many situations, it’s important to
correctly interpret the user’s response. If the user’s response doesn’t make
sense, you must ask again.

Getting a trustworthy response
Consider a program that deletes a file. Before deleting the file, the program
asks for confirmation from the user. If the user types Y, then delete; if the
user types N, then don’t delete. Of course, deleting a file is serious stuff.
Mistaking a bad keystroke for a “yes” answer can delete the company’s
records. (And mistaking a bad keystroke for a “no” answer can preserve the
company’s incriminating evidence.) So if there’s any doubt about the user’s
response, the program should ask the user to respond again.

296 Part III: Controlling the Flow

Pause a moment to think about the flow of actions — what should and
shouldn’t happen when the computer executes the loop. A loop of this kind
doesn’t need to check anything before getting the user’s first response.
Indeed, before the user gives the first response, the loop has nothing to
check. The loop shouldn’t start with “as long as the user’s response is
invalid, get another response from the user.” Instead, the loop should just
leap ahead, get a response from the user and then check the response to
see whether it made sense. The code to do all this is in Listing 15-4.

Listing 15-4: Repeat Before You Delete

/*
 * DISCLAIMER: Neither the author nor Wiley Publishing,
 * Inc., nor anyone else even remotely connected with the
 * creation of this book, assumes any responsibility
 * for any damage of any kind due to the use of this code,
 * or the use of any work derived from this code,
 * including any work created partially or in full by
 * the reader.
 *
 * Sign here:_______________________________
 */

import java.io.File;
import java.util.Scanner;

class IHopeYouKnowWhatYoureDoing {

 public static void main(String args[]) {

 Scanner keyboard = new Scanner(System.in);
 char reply;

 do {

 System.out.print("Reply with Y or N...");
 System.out.print
 (" Delete the importantData file? ");
 reply =
 keyboard.findWithinHorizon(".", 0).charAt(0);

 } while (reply != 'Y' && reply != 'N');

 if (reply == 'Y') {
 new File("importantData.txt").delete();
 System.out.println("Deleted!");
 } else {
 System.out.println("No harm in asking!");
 }

 keyboard.close();
 }
}

297 Chapter 15: The Old Runaround

Deleting a file
A run of the Listing 15-4 program is shown in Figure 15-6. Before deleting a
file, the program asks the user if it’s okay to do the deletion. If the user gives
one of the two expected answers (Y or N), the program proceeds according to
the user’s wishes. But if the user enters any other letter (or any digit, punctu-
ation symbol, or whatever), the program asks the user for another response.

Figure 15-6:
No! Don’t

do it!

In Figure 15-6, the user hems and haws for a while, first with the letter U, then
the digit 8, and then with lowercase letters. Finally, the user enters Y, and the
program deletes the importantData.txt file. If you compare the files on
your hard drive (before and after the run of the program), you’ll see that the
program trashes the file named importantData.txt.

If you use Eclipse, here’s how you can tell that a file is being deleted:

 1. Create a Java project containing the code in Listing 15-4.

 If you followed the steps in Chapter 2 for importing this book’s exam-
ples, you can skip this create-a-project step and use the existing 15-04
project.

 2. In the Package Explorer, select the project.

 Don’t select any of the project’s subfolders. (For example, don’t select
the project’s src folder.) Instead, select the project’s root. For more info
about a project’s root, see Chapter 13.

 3. In Eclipse’s main menu, choose File➪New➪File.

 Eclipse’s New File dialog box appears.

 In the New File dialog box, make sure that the name of your project’s
root folder is in the box’s Enter Or Select The Parent Folder field. For
example, if you followed the steps in Chapter 2 for importing this book’s
examples, make sure that 15-04 (and no other text) appears in the Enter
Or Select The Parent Folder field.

 4. In the dialog box’s File Name field, type the name of your new file.

 Type importantData.txt.

 5. Click Finish.

298 Part III: Controlling the Flow

 6. Observe that the file’s name appears in Eclipse’s Package Explorer.

 The name is in the 15-04 project’s root directory. You put it in the root
directory because, in Listing 15-04, the name importantData.txt (with
no slashes or backslashes) refers only to a name in the project’s root
directory. The program’s run has no effect on any files outside of the root
directory, even if any of those files have the name importantData.txt.

 To find out how to refer to files outside of the project’s root directory,
refer to Chapter 13.

 For this experiment, you don’t have to add any text to the file. The file
exists only to be deleted.

 7. Run the program.

 When the program runs, type Y to delete the importantData.txt file.

 After running the program, you want to check to make sure that the pro-
gram deleted the importantData.txt file.

 8. In the Package Explorer, select the project’s root (again, for good
measure).

 9. In Eclipse’s main menu, choose File➪Refresh.

 Eclipse takes another look at the project directory and lists the directo-
ry’s files in the Package Explorer’s tree. Assuming that the program did
its job correctly, the file named importandData.txt no longer appears
in the tree.

In Listing 15-4, the statement

new File("importantData.txt").delete();

is tricky. At first glance, you seem to be creating a new file, only to delete that
file in the same line of code! But in reality, the words new File create only
a representation of a file inside your program. To be more precise, the words
new File create, inside your program, a representation of a disk file that
may or may not already exist on your computer’s hard drive. So here’s what
the new File statement really means:

"Let new File("importantData.txt")refer to a file named
importantData.txt. If such a file exists, then delete it."

Yes, the devil is in the details. But smiles are in the subtleties and nobility is
in the nuance.

299 Chapter 15: The Old Runaround

Using Java’s do statement
To write the program in Listing 15-4, you need a loop — a loop that repeat-
edly asks the user whether the importantData.txt file should be deleted.
(The action of the loop in Listing 15-4 is illustrated in Figure 15-7.) The loop
continues to ask until the user gives a meaningful response. The loop tests its
condition at the end of each iteration, after each of the user’s responses.

Figure 15-7:
Here we

go loop, do
loop.

That’s why the program in Listing 15-4 has a do loop (also known as a do . . .
while loop). With a do loop, the program jumps right in, executes some state-
ments, and then checks a condition. If the condition is true, the program goes
back to the top of the loop for another go-around. If the condition is false, the
computer leaves the loop (and jumps to whatever code comes immediately
after the loop).

A closer look at the do statement
The format of a do loop is

do {
 Statements
} while (Condition)

300 Part III: Controlling the Flow

Writing the Condition at the end of the loop reminds me that the com-
puter executes the Statement inside the loop first. After the computer
executes the Statement, the computer goes on to check the Condition. If
the Condition is true, the computer goes back for another iteration of the
Statement.

With a do loop, the computer always executes the statements inside the loop
at least once:

//This code prints something:
int twoPlusTwo = 2 + 2;
do {
 System.out.println("Are you kidding?");
 System.out.println("2+2 doesn't equal 5.");
 System.out.print ("Everyone knows that");
 System.out.println(" 2+2 equals 3.");
} while (twoPlusTwo == 5);

This code displays Are you kidding? 2+2 doesn’t equal 5... and
so on and then tests the condition twoPlusTwo == 5. Because twoPlusTwo
== 5 is false, the computer doesn’t go back for another iteration. Instead, the
computer jumps to whatever code comes immediately after the loop.

Repeating with Predetermined Values
 (Java’s Enhanced for Statement)

Most people say that they “never win anything.” Other people win raffles,
drawings, and contests, but they don’t win things. Well, I have news for these
people — other people don’t win things, either. Nobody wins things. That’s
how the laws of probability work. Your chance of winning one of the popular
U.S. lottery jackpots is roughly 1 in 135,000,000. If you sell your quarter-
million dollar house and use all the money to buy lottery tickets, your chance
of winning is still only 1 in 540. If you play every day of the month (selling a
house each day), your chance of winning the jackpot is still less than 1 in 15.

Of course, nothing in the previous paragraph applies to me. I don’t buy lot-
tery tickets, but I often win things. My winning streak started a few years ago.
I won some expensive Java software at the end of an online seminar. Later
that month, I won a microchip-enabled pinky ring (a memento from a 1998
Java conference). The following year I won a wireless PDA. Just last week, I
won a fancy business-class printer.

301 Chapter 15: The Old Runaround

I never spend money to enter any contests. All these winnings are freebies.
When the national computer science educators’ conference met in Reno,
Nevada, my colleagues convinced me to try the slot machines. I lost $23, and
then I won back $18. At that point, I stopped playing. I wanted to quit while I
was only $5 behind.

That’s why my writing a Java program about slot machines is such a strange
occurrence. A typical slot machine has three reels, with each reel having about
20 symbols. But to illustrate this section’s ideas, I don’t need 20 symbols.
Instead I use four symbols — a cherry, a lemon, a kumquat, and a rutabaga.

Creating an enhanced for loop
When you play my simplified slot machine, you can spin any one of over 60
combinations — cherry+cherry+kumquat, rutabaga+rutabaga+rutabaga, or
whatever. This chapter’s goal is to list all possible combinations. But first, I
show you another kind of loop. Listing 15-5 defines an enum type for a slot
machine’s symbols and displays a list of the symbols. (For an introduction to
enum types, see Chapter 10.)

Listing 15-5: Slot Machine Symbols

import static java.lang.System.out;

class ListSymbols {

 enum Symbol {
 cherry, lemon, kumquat, rutabaga
 }

 public static void main(String args[]) {
 for (Symbol leftReel : Symbol.values()) {
 out.println(leftReel);
 }
 }
}

Listing 15-5 uses Java’s enhanced for loop. The word “enhanced” means “en-
hanced compared with the loops in earlier versions of Java.” The enhanced
for loop was introduced in Java version 5.0. If you run Java version 1.4.2 (or
something like that), you can’t use an enhanced for loop.

Here’s the format of the enhanced for loop:

for (TypeName variableName : RangeOfValues) {
 Statements
}

302 Part III: Controlling the Flow

Here’s how the loop in Listing 15-5 follows the format:

 ✓ In Listing 15-5, the word Symbol is the name of a type.

 The int type describes values like –1, 0, 1, and 2. The boolean type
describes the values true and false. And (because of the code in
Listing 15-5) the Symbol type describes the values cherry, lemon,
kumquat, and rutabaga. For more information on enum types like
Symbol, see Chapter 10.

 ✓ In Listing 15-5, the word leftReel is the name of a variable.

 The loop in Listing 15-1 defines count to be an int variable. Similarly,
the loop in Listing 15-5 defines leftReel to be a Symbol variable. So
in theory, the variable leftReel can take on any of the four Symbol
values.

 By the way, I call this variable leftReel because the code lists all the
symbols that can appear on the leftmost of the slot machine’s three
reels. Because all three of the slot machine’s reels have the same sym-
bols, I may also have named this variable middleReel or rightReel.
But on second thought, I’ll save the names middleReel and rightReel
for a later example.

 ✓ In Listing 15-5, the expression Symbol.values() stands for the four
values in Listing 15-5.

 To quote myself in the previous bullet, “in theory, the variable leftReel
can take on any of the four Symbol values.” Well, the RangeOfValues
part of the for statement turns theory into practice. This third item
inside the parentheses says, “Have as many loop iterations as there
are Symbol values, and have the leftReel variable take on a different
Symbol value during each of the loop’s iterations.”

 So the loop in Listing 15-5 undergoes four iterations — an iteration
in which leftReel has value cherry, another iteration in which
leftReel has value lemon, a third iteration in which leftReel has
value kumquat, and a fourth iteration in which leftReel has value
rutabaga. During each iteration, the program prints the leftReel vari-
able’s value. The result is in Figure 15-8.

Figure 15-8:
The output
of the code

in Listing
15-5.

303 Chapter 15: The Old Runaround

In general, a someEnumTypeName.values() expression stands for the set of
values that a particular enum type’s variable can have. For example, back in
Listing 10-7, you can use the expression WhoWins.values() to refer to the
home, visitor, and neither values.

 The difference between a type’s name (like Symbol) and the type’s values
(as in Symbol.values()) is really subtle. Fortunately, you don’t have to
worry about the difference. As a beginning programmer, you can just use
the .values() suffix in an enhanced loop’s RangeOfValues part.

Nesting the enhanced for loops
Listing 15-5 solves a simple problem in a very elegant way. So after reading
about Listing 15-5, you ask about more complicated problems. “Can I list
all possible three-reel combinations of the slot machine’s four symbols?”
Yes, you can. Listing 15-6 shows you how to do it.

Listing 15-6: Listing the Combinations

import static java.lang.System.out;

class ListCombinations {

 enum Symbol {
 cherry, lemon, kumquat, rutabaga
 }

 public static void main(String args[]) {

 for (Symbol leftReel : Symbol.values()) {
 for (Symbol middleReel : Symbol.values()) {
 for (Symbol rightReel : Symbol.values()) {
 out.print(leftReel);
 out.print(" ");
 out.print(middleReel);
 out.print(" ");
 out.println(rightReel);
 }
 }
 }
 }
}

When you run the program in Listing 15-6, you get 64 lines of output. Some of
those lines (from the middle of a run) are shown in Figure 15-9.

304 Part III: Controlling the Flow

Figure 15-9:
Some lines

of output
from the
code in

Listing 15-6.

Like the code in Listing 15-3, the program in Listing 15-6 contains a loop
within a loop. In fact, Listing 15-6 has a loop within a loop within a loop.
Here’s the strategy in Listing 15-6:

for (each of the 4 symbols that
 can appear on the left reel),

 for (each of the 4 symbols that
 can appear on the middle reel),

 for (each of the 4 symbols that
 can appear on the right reel),

 display the three reels' symbols.

So you start the outer loop with the cherry symbol. Then you march on to
the middle loop and begin that loop with the cherry symbol. Then you pro-
ceed to the inner loop and pick the cherry (pun intended). At last, with each
loop tuned to the cherry setting, you display the cherry cherry cherry
combination. (See Figure 15-10.)

305 Chapter 15: The Old Runaround

Figure 15-10:
Entering

loops for the
first time in

the program
of Listing

15-6.

After displaying cherry cherry cherry, you continue with other values of
the innermost loop. That is, you change the right reel’s value from cherry to
lemon. (See Figure 15-11.) Now the three reels’ values are cherry cherry
lemon, so you display these values on the screen.

Figure 15-11:
Changing

from cherry
to lemon in

the inner-
most loop.

After exhausting the four values of the innermost (right reel) loop, you
jump out of that innermost loop. But the jump puts you back to the top of
the middle loop, where you change the value of middleReel from cherry
to lemon. Now the values of leftReel and middleReel are cherry and
lemon, respectively. (See Figure 15-12.)

306 Part III: Controlling the Flow

Figure 15-12:
Changing

from cherry
to lemon in
the middle

loop.

Having changed to lemon on the middle loop, you go barreling again into
the innermost loop. As if you’d never seen this inner loop before, you set the
loop’s variable to cherry. (See Figure 15-13.)

Figure 15-13:
Restarting

the inner
loop.

After displaying the tasty cherry lemon cherry combination, you start
changing the values of the innermost loop. (See Figure 15-14.)

307 Chapter 15: The Old Runaround

Figure 15-14:
Traveling a

second time
through the

innermost
loop.

The loop keeps going until it displays all 64 combinations. Whew!

308 Part III: Controlling the Flow

Part IV
Using Program Units

 Check out the article “What do all the Words in a JavaFX App Mean” (and more) online
at www.dummies.com/extras/beginningprogrammingwithjava

http://www.dummies.com/extras/beginningprogrammingwithjava

In this part . . .
 ✓ Working with several items at once

 ✓ Dividing your work into manageable parts

 ✓ Creating windows and other beautiful things

Chapter 16

Using Loops and Arrays
In This Chapter
▶ Using for loops to the max

▶ Storing many values in a single variable

▶ Working with groups of values

T
his chapter has ten illustrations. For these illustrations, the people at Wiley
Publishing insist on following numbering: Figure 16-1, Figure 16-2, Figure

16-3, Figure 16-4, Figure 16-5, Figure 16-6, Figure 16-7, Figure 16-8, Figure 16-9,
and Figure 16-10. But I like a different kind of numbering. I’d like to number the
illustrations figure[0], figure[1], figure[2], figure[3], figure[4],
figure[5], figure[6], figure[7], figure[8]. and figure[9]. In this
chapter, you’ll find out why.

Some Loops in Action
The Java Motel, with its ten comfortable rooms, sits in a quiet place off the
main highway. Aside from a small, separate office, the motel is just one long
row of ground-floor rooms. Each room is easily accessible from the spacious
front parking lot.

Oddly enough, the motel’s rooms are numbered 0 through 9. I could say that
the numbering is a fluke — something to do with the builder’s original design
plan. But the truth is, starting with 0 makes the examples in this chapter easier
to write.

You, as the Java Motel’s manager, store occupancy data in a file on your
computer’s hard drive. The file has one entry for each room in the motel. For
example, in Figure 16-1, Room 0 has one guest, Room 1 has four guests, Room 2
is empty, and so on.

312 Part IV: Using Program Units

Figure 16-1:
Occupancy
data for the
Java Motel.

You want a report showing the number of guests in each room. Because you
know how many rooms you have, this problem begs for a for loop. The code
to solve this problem is in Listing 16-1, and a run of the code is shown in
Figure 16-2.

Listing 16-1: A Program to Generate an Occupancy Report

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

class ShowOccupancy {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner diskScanner =
 new Scanner(new File("occupancy"));

 out.println("Room\tGuests");

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);
 out.print("\t");
 out.println(diskScanner.nextInt());
 }

 diskScanner.close();
 }
}

Listing 16-1 uses a for loop — a loop of the kind described in Chapter 15. As
the roomNum variable’s value marches from 0 to 9, the program displays one
number after another from the occupancy file. To read more about getting
numbers from a disk file like my occupancy file, see Chapter 13.

313 Chapter 16: Using Loops and Arrays

Figure 16-2:
Running

the code in
Listing 16-1.

 This example’s input file is named occupancy — not occupancy.txt. If
you use Windows Notepad to make an occupancy file, you must use quota-
tion marks in the Save As dialog box’s File Name field. That is, you must type
"occupancy" (with quotation marks) in the File Name field. If you don’t
surround the name with quotation marks, Notepad adds a default exten-
sion to the file’s name (turning occupancy into occupancy.txt). A similar
issue applies to the Macintosh’s TextEdit program. By default, TextEdit adds
the .rtf extension to each new file. To override the .rtf default for a par-
ticular file, select Format➪Make Plain Text. Then, in the Save As dialog box,
remove the check mark from the checkbox labeled If no extension is
provided, use ".txt". (To override the default for all newly created files,
choose TextEdit➪Preferences. Then, in the Format part of the Preferences dia-
log’s New Document tab, select Plain Text.)

Deciding on a loop’s limit at runtime
On occasion, you may want a more succinct report than the one in Figure 16-2.
“Don’t give me a long list of rooms,” you say. “Just give me the number of guests
in Room 3.” To get such a report, you need a slightly smarter program. The pro-
gram is in Listing 16-2, with runs of the program shown in Figure 16-3.

Listing 16-2: Report on One Room Only, Please

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

public class ShowOneRoomOccupancy {

 public static void main(String args[])
 throws FileNotFoundException {

(continued)

314 Part IV: Using Program Units

 Scanner keyboard = new Scanner(System.in);
 Scanner diskScanner =
 new Scanner(new File("occupancy"));
 int whichRoom;

 out.print("Which room? ");
 whichRoom = keyboard.nextInt();

 for (int roomNum = 0;
 roomNum < whichRoom; roomNum++){

 diskScanner.nextInt();
 }

 out.print("Room ");
 out.print(whichRoom);
 out.print(" has ");
 out.print(diskScanner.nextInt());
 out.println(" guest(s).");

 keyboard.close();
 diskScanner.close();
 }
}

Figure 16-3:
A few

one-room
reports.

If Listing 16-2 has a moral, it’s that the number of for loop iterations can vary
from one run to another. The loop in Listing 16-2 runs on and on as long as the
counting variable roomNum is less than a room number specified by the user.
When the roomNum is the same as the number specified by the user (that is,
when roomNum is the same as whichRoom), the computer jumps out of the
loop. Then the computer grabs one more int value from the occupancy file
and displays that value on the screen.

Listing 16-2 (continued)

315 Chapter 16: Using Loops and Arrays

As you stare at the runs in Figure 16-3, it’s important to remember the unusual
numbering of rooms. Room 3 has two guests because Room 3 is the fourth
room in the occupancy file of Figure 16-1. That’s because the motel’s rooms
are numbered 0 through 9.

Using all kinds of conditions in a for loop
Look at the run in Figure 16-3 and notice the program’s awful behavior when
the user mistakenly asks about a nonexistent room. The motel has no Room 10.
If you ask for the number of guests in Room 10, the program tries to read more
numbers than the occupancy file contains. This unfortunate attempt causes a
NoSuchElementException.

Grabbing input here and there
Listing 16-2 illustrates some pithy issues sur-
rounding the input of data. For one thing, the
program gets input from both the keyboard and
a disk file. (The program gets a room number
from the keyboard. Then the program gets
the number of guests in that room from the
occupancy file.) To make this happen, Listing
16-2 sports two Scanner declarations — one
to declare keyboard, and a second to declare
diskScanner.

Later in the program, the call keyboard.
nextInt reads from the keyboard, and
diskScanner.nextInt reads from the
file. Within the program, you can read from the
keyboard or the disk as many times as you want.
You can even intermingle the calls — reading
once from the keyboard, then three times from
the disk, then twice from the keyboard, and
so on. All you have to do is remember to use
keyboard whenever you read from the key-
board and use diskScanner whenever you
read from the disk.

Another interesting tidbit in Listing 16-2 con-
cerns the occupancy file. Many of this chap-
ter’s examples read from an occupancy file,
and I use the same data in each of the exam-
ples. (I use the data shown in Figure 16-1.) To
run an example, I copy the occupancy file from
one Eclipse project to another. (Before running

the code in Listing 16-2, I go to my old 16-01
project in Eclipse’s Package Explorer. I right-
click the occupancy file in the 16-01 project
and select Copy from the context menu. Then
I right-click the new 16-02 project branch
and select Paste from the context menu. As
usual, Mac users do control-click instead of
right-click.)

In real life, having several copies of a data file
can be dangerous. You can modify one copy
and then accidentally read out-of-date data
from a different copy. Sure, you should have
backup copies, but you should have only one
“master” copy — the copy from which all pro-
grams get the same input.

So in a real-life program, you don’t copy
the occupancy file from one project to
another. What do you do instead? You put an
occupancy file in one place on your hard
drive and then have each program refer to the
file using the names of the file’s directories. For
example, if your occupancy file is in the c:\
Oct\22 directory, you write

Scanner diskScanner =
 new Scanner(new File(
 "c:\\oct\\22\\occupancy"));

A sidebar in Chapter 13 has more details about
filenames and double backslashes.

316 Part IV: Using Program Units

Listing 16-3 fixes the end-of-file problem.

Listing 16-3: A More Refined Version of the One-Room Code

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import static java.lang.System.out;

public class BetterShowOneRoom {

 public static void main(String args[])
 throws FileNotFoundException {

 Scanner keyboard = new Scanner(System.in);
 Scanner diskScanner =
 new Scanner(new File("occupancy"));
 int whichRoom;

 out.print("Which room? ");
 whichRoom = keyboard.nextInt();

 for (int roomNum = 0;
 roomNum < whichRoom && diskScanner.hasNext();
 roomNum++) {

 diskScanner.nextInt();
 }

 if (diskScanner.hasNext()) {
 out.print("Room ");
 out.print(whichRoom);
 out.print(" has ");
 out.print(diskScanner.nextInt());
 out.println(" guest(s).");
 }

 keyboard.close();
 diskScanner.close();
 }
}

The code in Listing 16-3 isn’t earth shattering. To get this code, you take the
code in Listing 16-2 and add a few tests for the end of the occupancy file.
You perform the diskScanner.hasNext test before each call to nextInt.
That way, if the call to nextInt is doomed to failure, you catch the potential
failure before it happens. A few test runs of the code in Listing 16-3 are shown
in Figure 16-4.

317 Chapter 16: Using Loops and Arrays

Figure 16-4:
The bad

room
number

10 gets no
response.

 In Listing 16-3, I want to know if the occupancy file contains any more data
(any data that I haven’t read yet). So I call the Scanner class’s hasNext
method. The hasNext method looks ahead to see whether I can read any
kind of data — an int value, a double value, a word, a boolean, or what-
ever. That’s okay for this section’s example, but in some situations, you
need to be pickier about your input data. For example, you may want to
know if you can call nextInt (as opposed to nextDouble or nextLine).
Fortunately, Java has methods for your pickiest input needs. A method like
if (diskScanner.hasNextInt()) tests to see whether you can read
an int value from the disk file. Java also has methods like hasNextLine,
hasNextDouble, and so on. For more information on the plain old hasNext
method, see Chapter 14.

Listing 16-3 has a big fat condition to keep the for loop going:

for (int roomNum = 0;
 roomNum < whichRoom && diskScanner.hasNext();
 roomNum++) {

Many for loop conditions are simple “less-than” tests, but there’s no rule
saying that all for loop conditions have to be so simple. In fact, any expres-
sion can be a for loop’s condition, as long as the expression has value true
or false. The condition in Listing 16-3 combines a “less than” with a call to
the Scanner class’s hasNext method.

Reader, Meet Arrays; Arrays,
Meet the Reader

A weary traveler steps up to the Java Motel’s front desk. “I’d like a room,”
says the traveler. So the desk clerk runs a report like the one in Figure 16-2.
Noticing the first vacant room in the list, the clerk suggests Room 2. “I’ll take
it,” says the traveler.

318 Part IV: Using Program Units

It’s so hard to get good help these days. How many times have you told the
clerk to fill the higher numbered rooms first? The lower numbered rooms
are older, and they are badly in need of repair. For example, Room 3 has an
indoor pool. (The pipes leak, so the carpet is soaking wet.) Room 2 has no
heat (not in wintertime, anyway). Room 1 has serious electrical problems
(so, for that room, you always get payment in advance). Besides, Room 8 is
vacant, and you charge more for the higher numbered rooms.

Here’s where a subtle change in presentation can make a big difference. You
need a program that lists vacant rooms in reverse order. That way, Room 8
catches the clerk’s eye before Room 2 does.

Think about strategies for a program that displays data in reverse. With the
input from Figure 16-1, the program’s output should look like the display
shown in Figure 16-5.

Figure 16-5:
A list of
vacant

rooms, with
higher num-

bered rooms
shown first.

Here’s the first (bad) idea for a programming strategy:

Get the last value in the occupancy file.
If the value is 0, print the room number.

Get the next-to-last value in the occupancy file.
If the value is 0, print the room number.

...And so on.

With some fancy input/output programs, this strategy may be workable. But
no matter what input/output program you use, jumping directly to the end or
to the middle of a file is a big pain in the boot. It’s especially bad if you plan
to jump repeatedly. So go back to the drawing board and think of something
better.

Here’s an idea! Read all the values in the occupancy file and store each value
in a variable of its own. Then you step through the variables in reverse order,
displaying a room number when it’s appropriate to do so.

319 Chapter 16: Using Loops and Arrays

This idea works, but the code is so ugly that I refuse to dignify it by calling it
a “Listing.” No, this is just a “see the following code” kind of thing. So please,
see the following ugly code:

/*
 * Ugh! I can't stand this ugly code!
 */
guestsIn0 = diskScanner.nextInt();
guestsIn1 = diskScanner.nextInt();
guestsIn2 = diskScanner.nextInt();
guestsIn3 = diskScanner.nextInt();
guestsIn4 = diskScanner.nextInt();
guestsIn5 = diskScanner.nextInt();
guestsIn6 = diskScanner.nextInt();
guestsIn7 = diskScanner.nextInt();
guestsIn8 = diskScanner.nextInt();
guestsIn9 = diskScanner.nextInt();

if (guestsIn9 == 0) {
 System.out.println(9);
}
if (guestsIn8 == 0) {
 System.out.println(8);
}
if (guestsIn7 == 0) {
 System.out.println(7);
}
if (guestsIn6 == 0) {

// ... And so on.

What you’re lacking is a uniform way of naming ten variables. That is, it would
be nice to write

/*
 * Nice idea, but this is not real Java code:
 */

//Read forwards
for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsInroomNum = diskScanner.nextInt();
}

//Write backwards
for (int roomNum = 9; roomNum >= 0; roomNum--) {
 if (guestsInroomNum == 0) {
 System.out.println(roomNum);
 }
}

320 Part IV: Using Program Units

Well, you can write loops of this kind. All you need are some square brackets.
When you add square brackets to the idea shown in the preceding code, you
get what’s called an array. An array is a row of values, like the row of rooms in
a one-floor motel. To picture the array, just picture the Java Motel:

 ✓ First, picture the rooms, lined up next to one another.

 ✓ Next, picture the same rooms with their front walls missing. Inside each
room, you can see a certain number of guests.

 ✓ If you can, forget that the two guests in Room 9 are putting piles of bills
into a big briefcase. Ignore the fact that the guest in Room 5 hasn’t moved
away from the TV set in a day and a half. Instead of all these details, just
see numbers. In each room, see a number representing the count of guests
in that room. (If freeform visualization isn’t your strong point, take a look
at Figure 16-6.)

Figure 16-6:
An abstract
snapshot of

rooms in the
Java Motel.

In the lingo of Java programming, the entire row of rooms is called an array.
Each room in the array is called a component of the array (also known as an
array element). Each component has two numbers associated with it:

 ✓ Index: In the case of the Java Motel array, the index is the room number
(a number from 0 to 9).

 ✓ Value: In the Java Motel array, the value is the number of guests in a
given room (a number stored in a component of the array).

321 Chapter 16: Using Loops and Arrays

Using an array saves you from having to declare ten separate variables:
guestsIn0, guestsIn1, guestsIn2, and so on. To declare an array with
ten values in it, you can write two fairly short lines of code:

int guestsIn[];
guestsIn = new int[10];

You can even squish these two lines into one longer line:

int guestsIn[] = new int[10];

In either of these code snippets, notice the use of the number 10. This number
tells the computer to make the guestsIn array have ten components. Each
component of the array has a name of its own. The starting component is
named guestsIn[0], the next is named guestsIn[1], and so on. The last of
the ten components is named guestsIn[9].

 In creating an array, you always specify the number of components. The
array’s indices always start with 0 and end with the number that’s one fewer
than the total number of components. For example, if your array has ten com-
ponents (and you declare the array with new int[10]), the array’s indices
go from 0 to 9.

Storing values in an array
After you’ve created an array, you can put values into the array’s components.
For example, the guests in Room 6 are fed up with all those mint candies that
you put on peoples’ beds. So they check out, and Room 6 becomes vacant.
You should put the value 0 into the 6 component. You can do it with this
assignment statement:

guestsIn[6] = 0;

On one weekday, business is awful. No one’s staying at the motel. But then
you get a lucky break. A big bus pulls up to the motel. The side of the bus has
a sign that says “Loners’ Convention.” Out of the bus come 25 people, each
walking to the motel’s small office, none paying attention to the others who
were on the bus. Each person wants a private room. Only 10 of them can stay
at the Java Motel, but that’s okay, because you can send the other 15 loners
down the road to the old C-Side Resort and Motor Lodge.

Anyway, to register ten of the loners into the Java Motel, you put one guest in
each of your ten rooms. Having created an array, you can take advantage of
the array’s indexing and write a for loop, like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsIn[roomNum] = 1;
}

322 Part IV: Using Program Units

This loop takes the place of ten assignment statements because the computer
executes the statement guestsIn[roomNum] = 1 ten times. The first time
around, the value of roomNum is 0, so in effect, the computer executes

guestsIn[0] = 1;

In the next loop iteration, the value of roomNum is 1, so the computer exe-
cutes the equivalent of the following statement:

guestsIn[1] = 1;

During the next iteration, the computer behaves as if it’s executing

guestsIn[2] = 1;

And so on. When roomNum gets to be 9, the computer executes the equiva-
lent of the following statement:

guestsIn[9] = 1;

Notice that the loop’s counter goes from 0 to 9. Compare this with Figure 16-6
and remember that the indices of an array go from 0 to one fewer than the
number of components in the array. Looping with room numbers from 0 to 9
covers all the rooms in the Java Motel.

 When you work with an array, and you step through the array’s components
using a for loop, you normally start the loop’s counter variable at 0. To form
the condition that tests for another iteration, you often write an expression
like roomNum < arraySize, where arraySize is the number of compo-
nents in the array.

Creating a report
The code to create the report in Figure 16-5 is shown in Listing 16-4. This
new program uses the idea in the world’s ugliest code (the code from several
pages back with variables guestsIn0, guestsIn1, and so on). But instead
of having ten separate variables, Listing 16-4 uses an array.

Listing 16-4: Traveling Through Data Both Forward and Backward

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

class VacanciesInReverse {

 public static void main(String args[])
 throws FileNotFoundException {

323 Chapter 16: Using Loops and Arrays

 Scanner diskScanner =
 new Scanner(new File("occupancy"));
 int guestsIn[];
 guestsIn = new int[10];

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsIn[roomNum] = diskScanner.nextInt();
 }

 for (int roomNum = 9; roomNum >= 0; roomNum--) {
 if (guestsIn[roomNum] == 0) {
 System.out.print("Room ");
 System.out.print(roomNum);
 System.out.println(" is vacant.");
 }
 }

 diskScanner.close();
 }
}

Notice the stuff in parentheses in the VacanciesInReverse program’s
second for loop. It’s easy to get these things wrong. You’re aiming for a loop
that checks Room 9, then Room 8, and so on.

if (guestsIn[9] == 0) {
 System.out.print(roomNum);
}
if (guestsIn[8] == 0) {
 System.out.print(roomNum);
}
if (guestsIn[7] == 0) {
 System.out.print(roomNum);
}

...And so on, until you get to...

if (guestsIn[0] == 0) {
 System.out.print(roomNum);
}

Some observations about the code:

 ✓ The loop’s counter must start at 9:

for (int roomNum = 9; roomNum >= 0; roomNum--)

324 Part IV: Using Program Units

 ✓ Each time through the loop, the counter goes down by one:

for (int roomNum = 9; roomNum >= 0; roomNum--)

 ✓ The loop keeps going as long as the counter is greater than or equal to 0:

for (int roomNum = 9; roomNum >= 0; roomNum--)

Think through each of these three items, and you’ll write a perfect for loop.

Working with Arrays
Earlier in this chapter, a busload of loners showed up at your motel. When
they finally left, you were glad to get rid them, even if it meant having all your
rooms empty for a while. But now, another bus pulls into the parking lot. This
bus has a sign that says “Gregarian Club.” Out of the bus come 50 people,
each more gregarious than the next. Now everybody in your parking lot is
clamoring to meet everyone else. While they meet and greet, they’re all frol-
icking toward the front desk, singing the club’s theme song. (Oh no! It’s the
Gregarian Chant!)

The first five Gregarians all want Room 7. It’s a tight squeeze, but you were
never big on fire codes, anyway. Next comes a group of three with a yen for
Room 0. (They’re computer programmers, and they think the room number is
cute.) Then there’s a pack of four Gregarians who want Room 3. (The in-room
pool sounds attractive to them.)

With all this traffic, you better switch on your computer. You start a program
that enables you to enter new occupancy data. The program has five parts:

 ✓ Create an array and then put 0 in each of the array’s components.

 When the Loners’ Club members left, the motel was suddenly empty.
(Heck, even before the Loners’ Club members left, the motel seemed
empty.) To declare an array and fill the array with zeros, you execute
code of the following kind:

int guestsIn[];
guestsIn = new int[10];

for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsIn[roomNum] = 0;
}

 ✓ Get a room number and then get the number of guests who will be
staying in that room.

325 Chapter 16: Using Loops and Arrays

 Reading numbers typed by the user is pretty humdrum stuff. Do a little
prompting and a little nextInt calling, and you’re all set:

out.print("Room number: ");
whichRoom = keyboard.nextInt();
out.print("How many guests? ");
numGuests = keyboard.nextInt();

 ✓ Use the room number and the number of guests to change a value in
the array.

 Earlier in this chapter, to put one guest in Room 2, you executed

guestsIn[2] = 1;

 So now, you have two variables — numGuests and whichRoom. Maybe
numGuests is 5, and whichRoom is 7. To put numGuests in whichRoom
(that is, to put 5 guests in Room 7), you can execute

guestsIn[whichRoom] = numGuests;

 That’s the crucial step in the design of your new program.

 ✓ Ask the user if the program should keep going.

 Are there more guests to put in rooms? To find out, execute this code:

 out.print("Do another? ");
} while (keyboard.
 findWithinHorizon(".",0).charAt(0) == 'Y');

 ✓ Display the number of guests in each room.

 No problem! You already did this. You can steal the code (almost verba-
tim) from Listing 16-1:

out.println("Room\tGuests");
for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);
 out.print("\t");
 out.println(guestsIn[roomNum]);
}

 The only difference between this latest code snippet and the stuff in
Listing 16-1 is that this new code uses the guestsIn array. The first
time through this loop, the code does

out.println(guestsIn[0]);

 displaying the number of guests in Room 0. The next time through the
loop, the code does

out.println(guestsIn[1]);

326 Part IV: Using Program Units

 displaying the number of guests in Room 1. The last time through the
loop, the code does

out.println(guestsIn[9]);

 That’s perfect.

The complete program (with these five pieces put together) is in Listing 16-5.
A run of the program is shown in Figure 16-7.

Listing 16-5: Storing Occupancy Data in an Array

import java.util.Scanner;
import static java.lang.System.out;

class AddGuests {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 int whichRoom, numGuests;
 int guestsIn[];
 guestsIn = new int[10];

 for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsIn[roomNum] = 0;
 }

 do {
 out.print("Room number: ");
 whichRoom = keyboard.nextInt();
 out.print("How many guests? ");
 numGuests = keyboard.nextInt();
 guestsIn[whichRoom] = numGuests;

 out.println();
 out.print("Do another? ");
 } while (keyboard.
 findWithinHorizon(".",0).charAt(0) == 'Y');

 out.println();
 out.println("Room\tGuests");
 for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.print(roomNum);
 out.print("\t");
 out.println(guestsIn[roomNum]);
 }

 keyboard.close();
 }
}

327 Chapter 16: Using Loops and Arrays

Figure 16-7:
Running

the code in
Listing 16-5.

Hey! The program in Listing 16-5 is pretty big! It may be the biggest program
so far in this book. But big doesn’t necessarily mean difficult. If each piece of
the program makes sense, you can create each piece on its own, and then put
all the pieces together. Voilà! The code is manageable.

Looping in Style
Chapter 15’s Listing 15-6 uses an enhanced for loop to step through a bunch
of values. In that program, the values belong to an enum type. Well, this chap-
ter also deals with a bunch of values — namely, the values in an array. So
you’re probably not surprised if I show you an enhanced for loop that steps
through an array’s values.

To see such a loop, start with the code in Listing 16-5. The last loop in that
program looks something like this:

for (int roomNum = 0; roomNum < 10; roomNum++) {
 out.println(guestsIn[roomNum]);
}

328 Part IV: Using Program Units

To turn this into an enhanced for loop, you make up a new variable name.
(What about the name howMany? I like that name.) Whatever name you
choose, the new variable ranges over the values in the guestsIn array.

for (int howMany : guestsIn) {
 out.println(howMany);
}

This enhanced loop uses the same format as the loop in Chapter 15.

for (TypeName variableName : RangeOfValues) {
 Statements
}

In Chapter 15, the RangeOfValues belongs to an enum type. But in this
chapter’s example, the RangeOfValues belongs to an array.

Enhanced for loops are nice and concise. But don’t be too anxious to use
enhanced loops with arrays. This feature has some nasty limitations. For
example, my new howMany loop doesn’t display room numbers. I avoid room
numbers because the room numbers in my guestsIn array are the indices
0 through 9. Unfortunately, an enhanced loop doesn’t provide easy access to
an array’s indices.

And here’s another unpleasant surprise. Start with the following loop from
Listing 16-4:

for (int roomNum = 0; roomNum < 10; roomNum++) {
 guestsIn[roomNum] = diskScanner.nextInt();
}

Turn this traditional for loop into an enhanced for loop, and you get the
 following misleading code:

for (int howMany : guestsIn) {
 howMany = diskScanner.nextInt(); //Don't do this
}

The new enhanced loop doesn’t do what you want it to do. This loop reads
values from an input file and then dumps these values into the garbage can.
In the end, the array’s values remain unchanged.

It’s sad but true. To make full use of an array, you have to fall back on Java’s
plain old for loop.

329 Chapter 16: Using Loops and Arrays

Deleting Several Files
A program in Chapter 15 deletes a file named importantData.txt. The
code to delete the file looks like this:

new File("importantData.txt").delete();

In that code, the new File call refers to a single file. It’s very nice code, but
it doesn’t tell you how to delete a bunch of files. How can you write code to
deal with several files at once?

Fortunately, Java provides ways to deal with bunches of files. One way uses an
array of File objects. Listing 16-6 contains a program that illustrates this idea.

Listing 16-6: Deleting All .txt Files

import java.io.File;

class IHateTxtFiles {

 public static void main(String args[]) {

 File folder = new File(".");
 for (File file : folder.listFiles()) {
 if (file.getName().endsWith(".txt")) {
 file.delete();
 }
 }
 }
}

In many operating systems (including Windows, Mac OS, and Linux), a single
dot stands for the current working directory: the place where a program starts
looking for files. For a Java program running in Eclipse, this working directory
is the project’s root directory. For example, imagine that the code in Listing
16-6 lives in an Eclipse project named 16-06. Then your hard drive contains
a folder named 16-06, which in turn, contains a folder named src; which
in turn, contains the IHateTxtFiles.java file. (See Figure 16-8.) The pro-
gram’s working directory is the 16-06 directory. So, in Listing 16-6, the code

folder = new File(".")

makes folder refer to the directory named 16-06.

330 Part IV: Using Program Units

Figure 16-8:
Your project
is in a folder

named
16-06.

 If you finished reading the previous paragraph, I know what you’re think-
ing. “The project’s root directory, 16-06, is a folder, not a file. But the code
in Listing 16-6 says folder = new File("."). Why doesn’t the code say
folder = new Folder(".")? Well, I’m glad you asked. It turns out that
most operating systems blur the differences between folders and files. For
Java’s purposes, the document IHateTxtFiles.java is a file, the folder
named src is also a kind of a file, and the folder named 16-06 is also a kind
of a file.

In Java, every File object has a listFiles method, and when you call
folder.listFiles(), you get an array. Each “value” stored in the array is
one of the files in the folder. In Listing 16-6, the enhanced for loop has the
same format as the loop in the previous section.

for (TypeName variableName : RangeOfValues) {
 Statements
}

In Listing 16-6, the RangeOfValues is an array. The array contains all the
files inside the 16-06 project directory. So the enhanced for loop takes
each file inside the 16-06 directory and asks “Does this file’s name end with
.txt?”

if (file.getName().endsWith(".txt"))

If a particular file’s name ends with .txt, delete that file:

file.delete();

Figures 16-9 and 16-10 show some “before” and “after” pictures in Eclipse’s
Package Explorer. Before running this section’s example, the 16-06 directory
contains things named src, aFile.txt, save.me, and xFile.txt. After
running this section’s example, the 16-06 directory still contains src and
save.me, but no longer contains aFile.txt or xFile.txt.

331 Chapter 16: Using Loops and Arrays

Figure 16-9:
Your ugly

project,
before using

our .txt
file deletion

product.

Figure 16-10:
Your lovely

project,
after using
our .txt

file deletion
product.

 After running this section’s program, you might not see any changes in Eclipse’s
Package Explorer. To verify that the project directory no longer contains .txt
files, select the 16-06 branch in the Package Explorer. Then, in Eclipse’s main
menu, click File➪Refresh.

 Eclipse’s Package Explorer looks like it’s displaying all the files and folders on
a part of your hard drive. But looks can be deceiving. Some of the Package
Explorer’s branches represent neither files nor folders. (For example, in Figures
16-9 and 16-10, the JRE System Library branch represents a bunch of
related files — files that may or may not all be in the same directory.) And
some of your hard drive’s files and folders don’t appear in Eclipse’s Package
Explorer. (In addition to things like src, which appears in Eclipse’s Package
Explorer, a project’s folder typically contains files named .classpath and
.project, and folders named .settings and bin. These additional files and
folders aren’t normally displayed in Eclipse’s Package Explorer.)

 When you call folder.listFiles(), the resulting array doesn’t include any
of the things in subdirectories of the folder directory. Just to make sure, I
created dFile.txt inside the 16-06 project’s src directory, and then I ran
this section’s example. After running the program, dFile.txt had not been
deleted.

332 Part IV: Using Program Units

Chapter 17

Programming with Objects
and Classes

In This Chapter
▶ Programming with class (and with style and finesse)

▶ Making objects from classes

▶ Joining the exclusive “I understand classes and objects” society

C
hapters 6, 7, and 8 introduce Java’s primitive types — things like int,
double, char, and boolean. That’s great, but how often does a real-

world problem deal exclusively with such simple values? Consider an exchange
between a merchant and a customer. The customer makes a purchase, which
can involve item names, model numbers, credit card info, sales tax rates, and
lots of other stuff.

In older computer programming languages, you treat an entire purchase like
a big pile of unbundled laundry. Imagine a mound of socks, shirts, and other
pieces of clothing. You have no basket, so you grab as much as you can handle.
As you walk to the washer, you drop a few things — a sock here and a wash-
cloth there. This is like the older way of storing the values in a purchase. In
older languages, there’s no purchase. There are only double values, char
values, and other loose items. You put the purchase amount in one variable,
the customer’s name in another, and the sales tax data somewhere else. But
that’s awful. You tend to drop things on your way to the compiler. With small
errors in a program, you can easily drop an amount here and a customer’s
name there.

So with laundry and computer programming, you’re better off if you have a
basket. The newer programming languages, like Java, allow you to combine
values and make new, more useful kinds of values. For example, in Java, you
can combine double values, boolean values, and other kinds of values to
create something that you call a Purchase. Because your purchase info is all
in one big bundle, keeping track of the purchase’s pieces is easier. That’s the
start of an important computer programming concept — the notion of object-
oriented programming.

334 Part IV: Using Program Units

Creating a Class
I start with a “traditional” example. The program in Listing 17-1 processes
simple purchase data. Two runs of the program are shown in Figure 17-1.

Listing 17-1: Doing It the Old Fashioned Way

import java.util.Scanner;

class ProcessData {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 double amount;
 boolean taxable;
 double total;

 System.out.print("Amount: ");
 amount = keyboard.nextDouble();
 System.out.print("Taxable? (true/false) ");
 taxable = keyboard.nextBoolean();

 if (taxable) {
 total = amount * 1.05;
 } else {
 total = amount;
 }

 System.out.print("Total: ");
 System.out.println(total);

 keyboard.close();
 }
}

Figure 17-1:
Processing

a customer’s
purchase.

335 Chapter 17: Programming with Objects and Classes

If the output in Figure 17-1 looks funny, it’s because I do nothing in the code to
control the number of digits beyond the decimal point. So in the output, the
value $20.00 looks like 20.0. That’s okay. I show you how to fix the problem
in Chapter 18.

Reference types and Java classes
The code in Listing 17-1 involves a few simple values — amount, taxable, and
total. So here’s the main point of this chapter: By combining several simple
values, you can get a single, more useful value. That’s the way it works. You take
some of Java’s primitive types, whip them together to make a primitive type
stew, and what do you get? You get a more useful type called a reference type.
Listing 17-2 has an example.

Listing 17-2: What It Means to Be a Purchase

class Purchase {
 double amount;
 boolean taxable;
 double total;
}

The code in Listing 17-2 has no main method, so Eclipse can compile the
code, but you can’t run it. When you choose Run➪Run As in Eclipse’s main
menu, the resulting context menu has no Java Application entry. You can click
the tiny Run As button in Eclipse’s toolbar and then select Java Application.
But then you get the message box shown in Figure 17-2. Because Listing 17-2
has no main method, there’s no place to start the executing. (In fact, the code
in Listing 17-2 has no statements at all. There’s nothing to execute.)

Figure 17-2:
The code in
Listing 17-2

has no main
method.

Using a newly defined class
To do something useful with the code in Listing 17-2, you need a main method.
You can put the main method in a separate file. Listing 17-3 shows you such
a file.

336 Part IV: Using Program Units

Listing 17-3: Using Your Purchase Class

import java.util.Scanner;

class ProcessPurchase {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 Purchase onePurchase = new Purchase();

 System.out.print("Amount: ");
 onePurchase.amount = keyboard.nextDouble();
 System.out.print("Taxable? (true/false) ");
 onePurchase.taxable = keyboard.nextBoolean();

 if (onePurchase.taxable) {
 onePurchase.total = onePurchase.amount * 1.05;
 } else {
 onePurchase.total = onePurchase.amount;
 }

 System.out.print("Total: ");
 System.out.println(onePurchase.total);

 keyboard.close();
 }
}

The best way to understand the code in Listing 17-3 is to compare it, line
by line, with the code in Listing 17-1. In fact, there’s a mechanical formula
for turning the code in Listing 17-1 into the code in Listing 17-3. Table 17-1
describes the formula.

Table 17-1 Converting Your Code to Use a Class
In Listing 17-1 In Listing 17-3
double amount;
boolean
taxable;
double total;

Purchase onePurchase = new
Purchase();

amount onePurchase.amount

taxable onePurchase.taxable

total onePurchase.total

The two programs (in Listings 17-1 and 17-3) do essentially the same thing, but
one uses primitive variables, and the other leans on the Purchase code from
Listing 17-2. Both programs have runs like the ones shown back in Figure 17-1.

337 Chapter 17: Programming with Objects and Classes

Running code that straddles
two separate files
From Eclipse’s point of view, a project that contains two Java source files is
no big deal. You create two classes in the same project, and then you choose
Run➪Run As➪Java Application. Everything works the way you expect it to
work.

The only time things become tricky is when you have two main methods in
the one project. This section’s example (Listings 17-2 and 17-3) doesn’t suffer
from that malady. But as you experiment with your code, you can easily add
classes with additional main methods. You may also create a large application
with several starting points.

When a project has more than one main method, Eclipse may prompt you and
ask which class’s main method you want to run. But sometimes Eclipse doesn’t
prompt you. Instead, Eclipse arbitrarily picks one of the main methods and
ignores all the others. This can be very confusing. You add a println call to
the wrong main method, and nothing appears in the Console view. Hey, what
gives?

You can fix the problem by following these steps:

 1. Expand the project’s branch in the Package Explorer.

 2. Expand the src folder within the project’s branch.

 3. Expand the (default package) branch within the src branch.

 The (default package) branch contains .java files.

 4. (In Windows) Right-click the .java file whose main method you want
to run. (On a Mac) Control-click the .java file whose main method
you want to run.

 5. In the resulting context menu, choose Run As➪Java Application.

 You cannot run a project that has no main method. If you try, you get a mes-
sage box like the one shown earlier in Figure 17-2.

Why bother?
On the surface, the code in Listing 17-3 is longer, more complicated, and
harder to read. But think about a big pile of laundry. It may take time to find a
basket and to shovel socks into the basket. But when you have clothes in the
basket, the clothes are much easier to carry. It’s the same way with the code
in Listing 17-3. When you have your data in a Purchase basket, it’s much
easier to do complicated things with purchases.

338 Part IV: Using Program Units

From Classes Come Objects
The code in Listing 17-2 defines a class. A class is a design plan; it describes the
way in which you intend to combine and use pieces of data. For example, the
code in Listing 17-2 announces your intention to combine double, boolean,
and double values to make new Purchase values.

Classes are central to all Java programming. But Java is called an object-
oriented language. Java isn’t called a class-oriented language. In fact, no one
uses the term class-oriented language. Why not?

Well, you can’t put your arms around a class. A class isn’t real. A class without
an object is like a day without chocolate. If you’re sitting in a room right now,
glance at all the chairs in the room. How many chairs are in the room? Two?
Five? Twenty? In a room with five chairs, you have five chair objects. Each
chair (each object) is something real, something you can use, something you
can sit on.

A language like Java has classes and objects. So what’s the difference between
a class and an object?

 ✓ An object is a thing.

 ✓ A class is a design plan for things of that kind.

For example, how would you describe what a chair is? Well, a chair has a
seat, a back, and legs. In Java, you may write the stuff in Listing 17-4.

Listing 17-4: What It Means to Be a Chair

/*
 * This is real Java code, but this code
 * cannot be compiled on its own:
 */

class Chair {
 FlatHorizonalPanel seat;
 FlatVerticalPanel back;
 LongSkinnyVerticalRods legs;
}

The preceding code is a design plan for chairs. The code tells you that
each chair has three things. The code names the things (seat, back, and
legs) and tells you a little bit about each thing. (For example, a seat is a

339 Chapter 17: Programming with Objects and Classes

FlatHorizontalPanel.) In the same way, the code in Listing 17-2 tells you
that each purchase has three things. The code names the things (amount,
taxable, and total) and tells you the primitive type of each thing.

So imagine some grand factory at the edge of the universe. While you sleep
each night, this factory stamps out tangible objects — objects that you’ll
encounter during the next waking day. Tomorrow you’ll go for an interview at
the Sloshy Shoes Company. So tonight, the factory builds chairs for the com-
pany’s offices. The factory builds chair objects, as shown in Figure 17-3, from
the almost-real code in Listing 17-4.

Figure 17-3:
Chair

objects from
the Chair

class.

In Listing 17-3, the line

Purchase onePurchase = new Purchase();

behaves like that grand factory at the edge of the universe. Instead of creating
chair objects, that line in Listing 17-3 creates a purchase object, as shown in
Figure 17-4. That particular line in Listing 17-3 is a declaration with an initial-
ization. Just as the line

int count = 0;

declares the count variable and sets count to 0, the line in Listing 17-3
declares the onePurchase variable and makes onePurchase point to a
brand-new object. That new object contains three parts: an amount part, a
taxable part, and a total part.

340 Part IV: Using Program Units

Figure 17-4:
An object

created
from the

Purchase
class.

 If you want to be picky, there’s a difference between the stuff in Figure 17-4 and
the action of the big bold statement in Listing 17-3. Figure 17-4 shows an object
with the values 20.00, true, and 21.00 stored in it. The statement in Listing
17-3 creates a new object, but it doesn’t fill the object with useful values.
Getting values comes later in Listing 17-3.

Understanding (or ignoring)
the subtleties
Sometimes, when you refer to a particular object, you want to emphasize
which class the object came from. Well, subtle differences in emphasis call
for big differences in terminology. So here’s how Java programmers use the
terminology:

 ✓ The bold line in Listing 17-3 creates a new object.

 ✓ The bold line in Listing 17-3 creates a new instance of thePurchase class.

The words object and instance are almost synonymous, but Java programmers
never say “object of the Purchase class” (or if they do, they feel funny).

By the way, if you mess up this terminology and say something like “object
of the Purchase class,” no one jumps down your throat. Everyone under-
stands what you mean, and life goes on as usual. In fact, I often use a phrase
like “Purchase object” to describe an instance of the Purchase class. The

341 Chapter 17: Programming with Objects and Classes

difference between object and instance isn’t terribly important. But it’s very
important to remember that the words object and instance have the same
meaning. (Okay! They have nearly the same meaning.)

Making reference to an object’s parts
After you’ve created an object, you use dots to refer to the object’s parts. For
example, in Listing 17-3, I put a value into the onePurchase object’s amount
part with the following code:

onePurchase.amount = keyboard.nextDouble();

Later in Listing 17-3, I get the amount part’s value with the following code:

onePurchase.total = onePurchase.amount * 1.05;

This dot business may look cumbersome, but it really helps programmers
when they’re trying to organize the code. In Listing 17-1, each variable is a
separate entity. But in Listing 17-3, each use of the word amount is inextrica-
bly linked to the notion of a purchase. That’s good.

Creating several objects
After you’ve created a Purchase class, you can create as many purchase
objects as you want. For example, in Listing 17-5, I create three purchase
objects.

Listing 17-5: Processing Purchases

import java.util.Scanner;

class ProcessPurchasesss {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 Purchase aPurchase;

 for (int count = 0; count < 3; count++) {
 aPurchase = new Purchase();

 System.out.print("Amount: ");
 aPurchase.amount = keyboard.nextDouble();
 System.out.print("Taxable? (true/false) ");
 aPurchase.taxable = keyboard.nextBoolean();

 if (aPurchase.taxable) {
 aPurchase.total = aPurchase.amount * 1.05;

(continued)

342 Part IV: Using Program Units

 } else {
 aPurchase.total = aPurchase.amount;
 }

 System.out.print("Total: ");
 System.out.println(aPurchase.total);
 System.out.println();
 }

 keyboard.close();
 }
}

Figure 17-5 has a run of the code in Listing 17-5, and Figure 17-6 illustrates the
concept.

Figure 17-5:
Running

the code in
Listing 17-5.

Figure 17-6:
From one

class come
three

objects.

Listing 17-5 (continued)

343 Chapter 17: Programming with Objects and Classes

 To compile the code in Listing 17-5, you must have a copy of the Purchase
class in the same project. (The Purchase class is in Listing 17-2.) To copy a
class’s code from one project to another, see Chapter 16. (One of that chap-
ter’s sidebars describes the copy-and-paste routine.)

Listing 17-5 has only one variable that refers to purchase objects. (The
variable’s name is aPurchase.) The program has three purchase objects
because the assignment statement

aPurchase = new Purchase();

is executed three times (once for each iteration of the for loop). Just as you
can separate an int variable’s assignment from the variable’s declaration

int count;
count = 0;

you can also separate a Purchase variable’s assignment from the variable’s
declaration:

Purchase aPurchase;

for (int count = 0; count < 3; count++) {
 aPurchase = new Purchase();

In fact, after you’ve created the code in Listing 17-2, the word Purchase
stands for a brand-new type — a reference type. Java has eight built-in primi-
tive types and has as many reference types as people can define during your
lifetime. In Listing 17-2, I define the Purchase reference type, and you can
define reference types, too.

Table 17-2 has a brief comparison of primitive types and reference types.

Table 17-2 Java Types
Primitive Type Reference Type

How it’s created Built into the
language

Defined as a Java class

How many are there Eight Indefinitely many

Sample variable
declaration

int count; Purchase
aPurchase;

Sample assignment count = 0; aPurchase = new
Purchase();

Assigning a value to one
of its parts

(Not applicable) aPurchase.amount =
20.00;

344 Part IV: Using Program Units

Another Way to Think about Classes
When you start learning object-oriented programming, you may think this
class idea is a big hoax. Some geeks in Silicon Valley had nothing better to do,
so they went to a bar and made up some confusing gibberish about classes.
They don’t know what it means, but they have fun watching people struggle
to understand it.

Well, that’s not what classes are all about. Classes are serious stuff. What’s
more, classes are useful. Many reputable studies have shown that classes and
object-oriented programming save time and money.

Even so, the notion of a class can be very elusive. Even experienced
programmers — the ones who are new to object-oriented programming —
have trouble understanding how an object differs from a class.

Classes, objects, and tables
Because classes can be so mysterious, I’ll expand your understanding with
another analogy. Figure 17-7 has a table of three purchases. The table’s title
consists of one word (the word “Purchase”), and the table has three column
headings — the words “amount,” “taxable,” and “total.” Well, the code in
Listing 17-2 has the same stuff — Purchase, amount, taxable, and total.
So in Figure 17-7, think of the top part of the table (the title and column head-
ings) as a class. Like the code in Listing 17-2, this top part of the table tells
us what it means to be a Purchase. (It means having an amount value, a
taxable value, and a total value.)

Figure 17-7:
A table of

purchases.

A class is like the top part of a table. And what about an object? Well, an object
is like a row of a table. For example, with the code in Listing 17-5 and the input
in Figure 17-5, I create three objects (three instances of the Purchase class).
The first object has amount value 20.00, taxable value true, and total value
21.00. In the table, the first row has these three values — 20.00, true, and 21.00,
as shown in Figure 17-8.

345 Chapter 17: Programming with Objects and Classes

Figure 17-8:
A purchase

corresponds
to a row of

the table.

Some questions and answers
Here’s the world’s briefest object-oriented programming FAQ:

 ✓ Can I have an object without having a class?

 No, you can’t. In Java, every object is an instance of a class.

 ✓ Can I have a class without having an object?

 Yes, you can. In fact, almost every program in this book creates a class
without an object. Take Listing 17-5, for example. The code in Listing 17-5
defines a class named ProcessPurchasesss. And nowhere in Listing 17-5
(or anywhere else) do I create an instance of the ProcessPurchasesss
class. I have a class with no objects. That’s just fine. It’s business as usual.

 ✓ After I’ve created a class and its instances, can I add more instances to
the class?

 Yes, you can. In Listing 17-5, I create one instance, then another, and
then a third. If I went one additional time around the for loop, I’d have a
fourth instance, and I’d put a fourth row in the table of Figure 17-8. With
no objects, three objects, four objects, or more objects, I still have the
same old Purchase class.

 ✓ Can an object come from more than one class?

 Bite your tongue! Maybe other object-oriented languages allow this
nasty class cross-breeding, but in Java, it’s strictly forbidden. That’s one
of the things that distinguishes Java from some of the languages that
preceded it. Java is cleaner, more uniform, and easier to understand.

346 Part IV: Using Program Units

Chapter 18

Using Methods and Variables
from a Java Class

In This Chapter
▶ Using Java’s String class

▶ Calling methods

▶ Understanding static and non-static methods and variables

▶ Making numbers look good

I
hope you didn’t read Chapter 17 because I tell a big lie at the beginning of
the chapter. Actually, it’s not a lie. It’s an exaggeration.

Actually, it’s not an exaggeration. It’s a careful choice of wording. In Chapter 17,
I write that the gathering of data into a class is the start of object-oriented
programming. Well, that’s true. Except that many programming languages had
data-gathering features before object-oriented programming became popular.
Pascal had records. C had structs.

To be painfully precise, the grouping of data into usable chunks is only a
prerequisite to object-oriented programming. You’re not really doing object-
oriented programming until you combine both data and methods in your
classes.

This chapter starts the “data and methods” ball rolling, and Chapter 19 rounds
out the picture.

The String Class
The String class is declared in the Java API. This means that somewhere in
the stuff you download from java.com is a file named String.java. If you
hunt down this String.java file and peek at the file’s code, you find some
very familiar-looking stuff:

class String {
 ...And so on.

348 Part IV: Using Program Units

In your own code, you can use this String class without ever seeing what’s
inside the String.java file. That’s one of the great things about object-
oriented programming.

A simple example
A String is a bunch of characters. It’s like having several char values in a
row. You can declare a variable to be of type String and store several letters
in the variable. Listing 18-1 has a tiny example.

Listing 18-1: I’m Repeating Myself Again (Again)

import java.util.Scanner;

class JazzyEchoLine {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String lineIn;

 lineIn = keyboard.nextLine();
 System.out.println(lineIn);

 keyboard.close();
 }
}

A run of Listing 18-1 is shown in Figure 18-1. This run bears an uncanny
resemblance to runs in Listing 5-1 in Chapter 5. That’s because Listing 18-1 is
a reprise of the effort in Listing 5-1.

Figure 18-1:
Running

the code in
Listing 18-1.

The new idea in Listing 18-1 is the use of a String. In Listing 5-1, I have no
variable to store the user’s input. But in Listing 18-1, I create the lineIn
variable. This variable stores a bunch of letters, like the letters Do as I
write, not as I do.

349 Chapter 18: Using Methods and Variables from a Java Class

Putting String variables to good use
The program in Listing 18-1 takes the user’s input and echoes it back on the
screen. This is a wonderful program, but (like many college administrators
that I know) it doesn’t seem to be particularly useful.

So take a look at a more useful application of Java’s String type. A nice one
is in Listing 18-2.

Listing 18-2: Putting a Name in a String Variable

import java.util.Scanner;
import static java.lang.System.out;

class ProcessMoreData {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String fullName;
 double amount;
 boolean taxable;
 double total;

 out.print("Customer's full name: ");
 fullName = keyboard.nextLine();
 out.print("Amount: ");
 amount = keyboard.nextDouble();
 out.print("Taxable? (true/false) ");
 taxable = keyboard.nextBoolean();

 if (taxable) {
 total = amount * 1.05;
 } else {
 total = amount;
 }

 out.println();
 out.print("The total for ");
 out.print(fullName);
 out.print(" is ");
 out.print(total);
 out.println(".");

 keyboard.close();
 }
}

350 Part IV: Using Program Units

A run of the code in Listing 18-2 is shown in Figure 18-2. The code stores
Barry A. Burd in a variable called fullName and displays the fullName
variable’s content as part of the output. To make this program work, you
have to store Barry A. Burd somewhere. After all, the program follows a
certain outline:

Get a name.
Get some other stuff.
Compute the total.
Display the name (along with some other stuff).

Figure 18-2:
Making a

purchase.

If you don’t have the program store the name somewhere, by the time it’s
done getting other stuff and computing the total, it forgets the name (so the
program can’t display the name).

Reading and writing strings
To read a String value from the keyboard, you can call either next or
nextLine:

 ✓ The method next reads up to the next blank space.

 For example, with the input Barry A. Burd, the statements

String firstName = keyboard.next();
String middleInit = keyboard.next();
String lastName = keyboard.next();

 assign Barry to firstName, A. to middleInit, and Burd to lastName.

 ✓ The method nextLine reads up to the end of the current line.

 For example, with input Barry A. Burd, the statement

String fullName = keyboard.nextLine();

 assigns Barry A. Burd to the variable fullName. (Hey, being an
author has some hidden perks.)

351 Chapter 18: Using Methods and Variables from a Java Class

To display a String value, you can call one of your old friends, System.
out.print or System.out.println. In fact, most of the programs in this
book display String values. In Listing 18-2, a statement like

out.print("Customer's full name: ");

displays the String value "Customer's full name: ".

 You can use print and println to write String values to a disk file. For
details, see Chapter 13.

Chapter 4 introduces a bunch of characters, enclosed in double quote marks:

"Chocolate, royalties, sleep"

In Chapter 4, I call this a literal of some kind. (It’s a literal because, unlike a
variable, it looks just like the stuff that it represents.) Well, in this chapter, I
can continue the story about Java’s literals:

 ✓ In Listing 18-2, amount and total are double variables, and 1.05 is a
double literal.

 ✓ In Listing 18-2, fullName is a String variable, and things like "Cus-
tomer's full name: " are String literals.

 In a Java program, you surround the letters in a String literal with double
quote marks.

Using an Object’s Methods
If you’re not too concerned about classes and reference types, the use of the
type String in Listing 18-2 is no big deal. Almost everything you can do with
a primitive type seems to work with the String type as well. But there’s
danger around the next curve. Take a look at the code in Listing 18-3 and the
run of the code shown in Figure 18-3.

Listing 18-3: A Faulty Password Checker

/*
 * This code does not work:
 */
import java.util.Scanner;
import static java.lang.System.out;

class TryToCheckPassword {

(continued)

352 Part IV: Using Program Units

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String password = "swordfish";
 String userInput;

 out.print("What's the password? ");
 userInput = keyboard.next();

 if (password == userInput) {
 out.println("You're okay!");
 } else {
 out.println("You're a menace.");
 }

 keyboard.close();
 }
}

Figure 18-3:
But I typed
the correct
password!

Here are the facts as they appear in this example:

 ✓ According to the code in Listing 18-3, the value of password is
"sword fish".

 ✓ In Figure 18-3, in response to the program’s prompt, the user types
swordfish. So in the code, the value of userInput is "swordfish".

 ✓ The if statement checks the condition password == userInput.
Because both variables have the value "swordfish", the condition
should be true, but . . .

 ✓ The condition is not true because the program’s output is You're a
menace.

What’s going on here? I try beefing up the code to see if I can find any clues.
An enhanced version of the password-checking program is in Listing 18-4,
with a run of the new version shown in Figure 18-4.

Listing 18-3 (continued)

353 Chapter 18: Using Methods and Variables from a Java Class

Listing 18-4: An Attempt to Debug the Code in Listing 18-3

import java.util.Scanner;
import static java.lang.System.out;

class DebugCheckPassword {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String password = "swordfish";
 String userInput;

 out.print("What's the password? ");
 userInput = keyboard.next();

 out.println();
 out.print("You typed ");
 out.println(userInput);
 out.print("But the password is ");
 out.println(password);
 out.println();

 if (password == userInput) {
 out.println("You're okay!");
 } else {
 out.println("You're a menace.");
 }

 keyboard.close();
 }
}

Figure 18-4:
This looks

even worse.

Ouch! I’m stumped this time. The run in Figure 18-4 shows that both the
userInput and password variables have value swordfish. So why doesn’t
the program accept the user’s input?

354 Part IV: Using Program Units

When you compare two things with a double equal sign, reference types
and primitive types don’t behave the same way. Consider, for example, int
versus String:

 ✓ You can compare two int values with a double equal sign. When you
do, things work exactly as you would expect. For example, the condition
in the following code is true:

int apples = 7;
int oranges = 7;

if (apples == oranges) {
 System.out.println("They're equal.");
}

 ✓ When you compare two String values with the double equal sign,
things don’t work the way you expect. The computer doesn’t check to
see if the two String values contain the same letters. Instead, the com-
puter checks some esoteric property of the way variables are stored in
memory.

 For your purposes, the term reference type is just a fancy name for a class.
Because String is defined to be a class in the Java API, I call String a refer-
ence type. This terminology highlights the parallel between primitive types
(such as int) and classes (that is, reference types, such as String).

Comparing strings
In the preceding bullets, the difference between int and String is mighty
interesting. But if the double equal sign doesn’t work for String values, how
do you check to see if Joe User enters the correct password? You do it with
the code in Listing 18-5.

Listing 18-5: Calling an Object’s Method

/*
 * This program works!
 */
import java.util.Scanner;
import static java.lang.System.out;

class CheckPassword {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String password = "swordfish";
 String userInput;

355 Chapter 18: Using Methods and Variables from a Java Class

 out.print("What's the password? ");
 userInput = keyboard.next();

 if (password.equals(userInput)) {
 out.println("You're okay!");
 } else {
 out.println("You're a menace.");
 }

 keyboard.close();
 }
}

A run of the new password-checking code is shown in Figure 18-5, and let me
tell you, it’s a big relief! The code in Listing 18-5 actually works! When the
user types swordfish, the if statement’s condition is true.

Figure 18-5:
At last, Joe

User can
log in.

The truth about classes and methods
The magic in Listing 18-5 is the use of a method named equals. I have two
ways to explain the equals method — a simple way, and a more detailed
way. First, here’s the simple way: The equals method compares the char-
acters in one string with the characters in another. If the characters are the
same, the condition inside the if statement is true. That’s all there is to it.

 Don’t use a double equal sign to compare two String objects. Instead, use
one of the object’s equals methods.

For a more detailed understanding of the equals method, flip to Chapter 17
and take a look at Figures 17-7 and 17-8. Those figures illustrate the similari-
ties between classes, objects, and the parts of a table. In the figures, each row
represents a purchase, and each column represents a feature that purchases
possess.

You can observe the same similarities for any class, including Java’s String
class. In fact, what Figure 17-7 does for purchases, Figure 18-6 does for
strings.

356 Part IV: Using Program Units

Figure 18-6:
Viewing the
String
class and
String

objects as
parts of a

table.

The stuff shown in Figure 18-6 is much simpler than the real String class
story. But Figure 18-6 makes a good point. Like the purchases in Figure 17-7,
each string has its own features. For example, each string has a value (the
actual characters stored in the string), and each string has a count (the
number of characters stored in the string). You can’t really write the follow-
ing line of code because the stuff in Figure 18-6 omits a few subtle details.

//This code does NOT work:
System.out.println(password.count);

Anyway, each row in Figure 18-6 has three items — a value, a count, and an
equals method. So each row of the table contains more than just data. Each
row contains an equals method, a way of doing something useful with the
data. It’s as though each object (each instance of the String class) has three
things:

 ✓ A bunch of characters (the object’s value)

 ✓ A number (the object’s count)

 ✓ A way of being compared with other strings (the object’s equals
method)

That’s the essence of object-oriented programming. Each string has its own per-
sonal copy of the equals method. For example, in Listing 18-5, the password
string has its own equals method. When you call the password string’s
equals method and put the userInput string in the method’s parentheses,
the method compares the two strings to see if those strings contain the same
characters.

The userInput string in Listing 18-5 has an equals method, too. I could
use the userInput string’s equals method to compare this string with
the password string. But I don’t. In fact, in Listing 18-5, I don’t use the
userInput string’s equals method at all. (To compare the userInput with
the password, I had to use either the password string’s equals method
or the userInput string’s equals method. So I made an arbitrary choice: I
chose the password string’s method.)

357 Chapter 18: Using Methods and Variables from a Java Class

Calling an object’s methods
Calling a string’s equals method is like getting a purchase’s total. With
both equals and total, you use your old friend, the dot. For example, in
Listing 17-3, you write

System.out.println(onePurchase.total);

and in Listing 18-5, you write

if (password.equals(userInput))

A dot works the same way for an object’s variables and its methods. In
either case, a dot takes the object and picks out one of the object’s parts. It
works whether that part is a piece of data (as in onePurchase.total) or a
method (as in password.equals).

Combining and using data
At this point in the chapter, I can finally say, “I told you so.” Here’s a quota-
tion from Chapter 17:

A class is a design plan; it describes the way in which you intend to com-
bine and use pieces of data.

A class can define the way you use data. How do you use a password and a
user’s input? You check to see whether they’re the same. That’s why Java’s
String class defines an equals method.

 An object can be more than just a bunch of data. With object-oriented pro-
gramming, each object possesses copies of methods for using that object.

Static Methods
You have a fistful of checks. Each check has a number, an amount, and a
payee. You print checks like these with your very own laser printer. To print
the checks, you use a Java class. Each object made from the Check class
has three variables (number, amount, and payee). And each object has one
method (a print method). You can see all this in Figure 18-7.

358 Part IV: Using Program Units

Figure 18-7:
The Check
class and

some check
objects.

You’d like to print the checks in numerical order. So you need a method to sort
the checks. If the checks in Figure 18-7 were sorted, the check with number
1699 would come first, and the check with number 1705 would come last.

The big question is, should each check have its own sort method? Does
the check with number 1699 need to sort itself? And the answer is no. Some
methods just shouldn’t belong to the objects in a class.

So where do such methods belong? How can you have a sort method with-
out creating a separate sort for each check?

Here’s the answer. You make the sort method be static. Anything that’s static
belongs to a whole class, not to any particular instance of the class. If the
sort method is static, the entire Check class has just one copy of the sort
method. This copy stays with the entire Check class. No matter how many
instances of the Check class you create — three, ten, or none — you have
just one sort method.

For an illustration of this concept, refer to Figure 18-7. The whole class has
just one sort method. So the sort method is static. No matter how you call
the sort method, that method uses the same values to do its work.

Of course, each individual check (each object, each row of the table in
Figure 18-7) still has its own number, its own amount, its own payee, and its
own print method. When you print the first check, you get one amount,
and when you print the second check, you get another. Because there’s a
number, an amount, a payee, and a print method for each object, I call
these things non-static. I call them non-static because . . . well . . . because
they’re not static.

Calling static and non-static methods
In this book, my first use of the word static is in Listing 3-1. I use static as
part of every main method (and this book’s listings have lots of main meth-
ods). In Java, your main method has to be static. That’s just the way it goes.

359 Chapter 18: Using Methods and Variables from a Java Class

To call a static method, you use a class’s name along with a dot. This is just
slightly different from the way you call a non-static method:

 ✓ To call an ordinary (non-static) method, you follow an object with a dot.

 For example, a program to process the checks in Figure 18-7 may contain
code of the following kind:

Check firstCheck;
firstCheck.number = 1705;
firstCheck.amount = 25.09;
firstCheck.payee = "The Butcher";
firstCheck.print();

 ✓ To call a class’s static method, you follow the class name with a dot.

 For example, to sort the checks in Figure 18-7, you may call

Check.sort();

Turning strings into numbers
The code in Listing 18-5 introduces a non-static method named equals.
To compare the password string with the userInput string, you preface
.equals with either of the two string objects. In Listing 18-5, I preface
.equals with the password object:

if (password.equals(userInput))

Each string object has an equals method of its own, so I can achieve the
same effect by writing

if (userInput.equals(password))

But Java has another class named Integer, and the whole Integer class
has a static method named parseInt. If someone hands you a string of char-
acters, and you want to turn that string into an int value, you can call the
Integer class’s parseInt method. Listing 18-6 has a small example.

Listing 18-6: More Chips, Please

import java.util.Scanner;
import static java.lang.System.out;

class AddChips {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String reply;
 int numberOfChips;

(continued)

360 Part IV: Using Program Units

 out.print("How many chips do you have?");
 out.print(" (Type a number,");
 out.print(" or type 'Not playing') ");
 reply = keyboard.nextLine();

 if (!reply.equals("Not playing")) {
 numberOfChips = Integer.parseInt(reply);
 numberOfChips += 10;

 out.print("You now have ");
 out.print(numberOfChips);
 out.println(" chips.");
 }

 keyboard.close();
 }
}

Some runs of the code in Listing 18-6 are shown in Figure 18-8. You want to
give each player ten chips. But some party poopers in the room aren’t playing.
So two people, each with no chips, may not get the same treatment. An empty-
handed player gets ten chips, but an empty-handed party pooper gets none.

Figure 18-8:
Running

the code in
Listing 18-6.

Listing 18-6 (continued)

361 Chapter 18: Using Methods and Variables from a Java Class

So in Listing 18-6, you call the Scanner class’s nextLine method, allowing
a user to enter any characters at all — not just digits. If the user types Not
playing, you don’t give the killjoy any chips.

If the user types some digits, you’re stuck holding these digits in the string
variable named reply. You can’t add ten to a string like reply. So you call
the Integer class’s parseInt method, which takes your string and hands
you back a nice int value. From there, you can add ten to the int value.

 Java has a loophole that allows you to add a number to a string. The problem
is, you don’t get real addition. Adding the number 10 to the string "30" gives
you "3010", not 40.

 Don’t confuse Integer with int. In Java, int is the name of a primitive type
(a type that I use throughout this book). But Integer is the name of a class.
Java’s Integer class contains handy methods for dealing with int values.
For example, in Listing 18-6, the Integer class’s parseInt method makes an
int value from a string.

Turning numbers into strings
In Chapter 17, Listing 17-1 adds tax to the amount of a purchase. But a run of
the code in Listing 17-1 has an anomaly. Refer to Figure 17-1. With 5 percent
tax on 20 dollars, the program displays a total of 21.0. That’s peculiar. Where
I come from, currency amounts aren’t normally displayed with just one digit
beyond the decimal point.

If you don’t choose your purchase amount carefully, the situation is even worse.
For example, in Figure 18-9, I run the same program (the code in Listing 17-1)
with purchase amount 19.37. The resulting display looks very nasty.

Figure 18-9:
Do you have

change for
20.3385000-

00000003?

With its internal zeros and ones, the computer doesn’t do arithmetic quite
the way you and I are used to doing it. So how do you fix this problem?

362 Part IV: Using Program Units

The Java API has a class named NumberFormat, and the NumberFormat
class has a static method named getCurrencyInstance. When you call
NumberFormat.getCurrencyInstance() with nothing inside the paren-
theses, you get an object that can mold numbers into U.S. currency amounts.
Listing 18-7 has an example.

Listing 18-7: The Right Way to Display a Dollar Amount

import java.text.NumberFormat;
import java.util.Scanner;

class BetterProcessData {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 double amount;
 boolean taxable;
 double total;
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();
 String niceTotal;

 System.out.print("Amount: ");
 amount = keyboard.nextDouble();
 System.out.print("Taxable? (true/false) ");
 taxable = keyboard.nextBoolean();

 if (taxable) {
 total = amount * 1.05;
 } else {
 total = amount;
 }

 niceTotal = currency.format(total);
 System.out.print("Total: ");
 System.out.println(niceTotal);

 keyboard.close();
 }
}

For some beautiful runs of the code in Listing 18-7, see Figure 18-10. Now
at last, you see a total like $20.34, not 20.338500000000003. Ah! That’s
much better.

363 Chapter 18: Using Methods and Variables from a Java Class

Figure 18-10:
 See the

pretty
numbers.

How the NumberFormat works
For my current purposes, the code in Listing 18-7 contains three interesting
variables:

 ✓ The variable total stores a number, such as 21.0.

 ✓ The variable currency stores an object that can mold numbers into
U.S. currency amounts.

 ✓ The variable niceTotal is set up to store a bunch of characters.

The currency object has a format method. So to get the appropriate bunch
of characters into the niceTotal variable, you call the currency object’s
format method. You apply this format method to the variable total.

Your country; your currency
The code in Listing 18-7 works well in the United States. But in another coun-
try, the currency symbol might not be the dollar sign ($), and you might rep-
resent twenty with characters other than 20.00.

364 Part IV: Using Program Units

Java shapes its input and output to match your computer’s locale. Imagine,
for example, that your computer runs the version of Windows sold in France.
Then, as far as Java is concerned, your computer’s locale is Locale.FRANCE,
and a run of the code in Listing 18-7 looks like the run shown in Figure 18-11.

Figure 18-11:
 A run of

Listing 18-7
on a

computer in
France.

In fact, you can customize your code for many countries, and you don’t
have to buy airplane tickets to do it! My computer is configured to run in the
United States. But in Listing 18-8, I use Java’s Locale class to get the run
shown in Figure 18-11.

Listing 18-8: Using a Java Locale

import java.text.NumberFormat;
import java.util.Locale;
import java.util.Scanner;

class MieuxTraiterLesDonnées {

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 keyboard.useLocale(Locale.FRANCE);

 double amount;
 boolean taxable;
 double total;
 NumberFormat currency = NumberFormat.
 getCurrencyInstance(Locale.FRANCE);
 String niceTotal;

 System.out.print("Amount: ");
 amount = keyboard.nextDouble();
 System.out.print("Taxable? (true/false) ");
 taxable = keyboard.nextBoolean();

 if (taxable) {
 total = amount * 1.05;
 } else {
 total = amount;
 }

365 Chapter 18: Using Methods and Variables from a Java Class

 niceTotal = currency.format(total);
 System.out.print("Total: ");
 System.out.println(niceTotal);

 keyboard.close();
 }
}

Understanding the Big Picture
In this section, I answer some of the burning questions that I raise through-
out the book. “What does java.util stand for?” “Why do I need the word
static at certain points in the code?” “How can a degree in Horticultural
Studies help you sort cancelled checks?”

I also explain “static” in some unique and interesting ways. After all, static
methods and variables aren’t easy to understand. It helps to read about
Java’s static feature from several points of view.

Packages and import declarations
In Java, you can group a bunch of classes into something called a package. In
fact, the classes in Java’s standard API are divided into about 200 packages.
This book’s examples make heavy use of three packages — the packages
named java.util, java.lang, and java.io.

The class java.util.Scanner
The package java.util contains about 50 classes, including the very
useful Scanner class. Like most other classes, this Scanner class has two
names — a fully qualified name and an abbreviated simple name. The class’s
fully qualified name is java.util.Scanner, and the class’s simple name is
Scanner. You get the fully qualified name by adding the package name to the
class’s simple name. (That is, you add the package name java.util to the
simple name Scanner. You get java.util.Scanner.)

An import declaration lets you abbreviate a class’s name. With the declaration

import java.util.Scanner;

the Java compiler figures out where to look for the Scanner class. So instead
of writing java.util.Scanner throughout your code, you can just write
Scanner.

366 Part IV: Using Program Units

The class java.lang.System
The package java.lang contains about 35 classes, including the ever-popular
System class. (The class’s fully qualified name is java.lang.System, and
the class’s simple name is System.) Instead of writing java.lang.System
throughout your code, you can just write System. You don’t even need an
import declaration.

 Among all of Java’s packages, the java.lang package is special. With or with-
out an import declaration, the compiler imports everything in the java.lang
package. You can start your program with import java.lang.System. But
if you don’t, the compiler adds this declaration automatically.

The static System.out variable
What kind of importing must you do in order to abbreviate System.out.
println? How can you shorten it to out.println? An import declaration
lets you abbreviate a class’s name. But in the expression System.out, the
word out isn’t a class. The word out is a static variable. (The out variable
refers to the place where a Java program sends text output.) So you can’t
write

//This code is bogus. Don't use it:
import java.lang.System.out;

What do you do instead? You write

import static java.lang.System.out;

To find out more about the out variable’s being a static variable, read the
next section.

All ye need to know
I can summarize much of Java’s complexity in
only a few sentences:

 ✓ The Java API contains many packages.

 ✓ A package contains classes.

 ✓ From a class, you can create objects.

 ✓ An object can have its own methods. An
object can also have its own variables.

 ✓ A class can have its own static methods. A
class can also have its own static variables.

367 Chapter 18: Using Methods and Variables from a Java Class

Shedding light on the static darkness
I love to quote myself. When I quote my own words, I don’t need written per-
mission. I don’t have to think about copyright infringement, and I never hear
from lawyers. Best of all, I can change and distort anything I say. When I para-
phrase my own ideas, I can’t be misquoted.

With that in mind, here’s a quote from the previous section:

“Anything that’s static belongs to a whole class, not to any particular instance
of the class. . . . To call a static method, you use a class’s name along with
a dot.”

How profound! In Listing 18-6, I introduce a static method named parseInt.
Here’s the same quotation applied to the static parseInt method:

The static parseInt method belongs to the whole Integer class, not to any
particular instance of the Integer class. . . . To call the static parseInt
method, you use the Integer class’s name along with a dot. You write
something likeInteger.parseInt(reply).

That’s very nice! How about the System.out business that I introduce in
Chapter 3? I can apply my quotation to that, too.

The static out variable belongs to the whole System class, not to any
particular instance of the System class. . . . To refer to the static out
variable, you use the System class’s name along with a dot. You write
something like System.out.println().

If you think about what System.out means, this static business makes
sense. After all, the name System.out refers to the place where a Java pro-
gram sends text output. (When you use Eclipse, the name System.out refers
to Eclipse’s Console view.) A typical program has only one place to send its
text output. So a Java program has only one out variable. No matter how
many objects you create — three, ten, or none — you have just one out vari-
able. And when you make something static, you ensure that the program has
only one of those things.

All right, then! The out variable is static.

To abbreviate the name of a static variable (or a static method), you don’t
use an ordinary import declaration. Instead, you use a static import declara-
tion. That’s why, in Chapter 9 and beyond, I use the word static to import
the out variable:

import static java.lang.System.out;

368 Part IV: Using Program Units

Barry makes good on an age-old promise
In Chapter 6, I pull a variable declaration outside of a main method. I go from
code of the kind in Listing 18-9 to code of the kind that’s in Listing 18-10.

Listing 18-9: Declaring a Variable Inside the main Method

class SnitSoft {

 public static void main(String args[]) {
 double amount = 5.95;

 amount = amount + 25.00;
 System.out.println(amount);
 }
}

Listing 18-10: Pulling a Variable Outside of the main Method

class SnitSoft {
 static double amount = 5.95;

 public static void main(String args[]) {
 amount = amount + 25.00;
 System.out.println(amount);
 }
}

In Chapter 6, I promise to explain why Listing 18-10 needs the extra word
static (in static double amount = 5.95). Well, with all the fuss about
static methods in this chapter, I can finally explain everything.

Refer to Figure 18-7. In that figure, you have checks, and you have a sort
method. Each individual check has its own number, its own amount, and its
own payee. But the entire Check class has just one sort method.

I don’t know about you, but to sort my cancelled checks, I hang them on my
exotic Yucca Elephantipes tree. I fasten the higher numbered checks to the
upper leaves and put the lower numbered checks on the lower leaves. When
I find a check whose number comes between two other checks, I select a free
leaf (one that’s between the upper and lower leaves).

369 Chapter 18: Using Methods and Variables from a Java Class

A program to mimic my sorting method looks something like this:

class Check {
 int number;
 double amount;
 String payee;

 static void sort() {
 Yucca tree;

 if (myCheck.number > 1700) {
 tree.attachHigh(myCheck);
 }
 // ... etc.
 }
}

Because of the word static, the Check class has only one sort method.
And because I declare the tree variable inside the static sort method, this
program has only one tree variable. (Indeed, I hang all my cancelled checks
on just one Yucca tree.) I can move the tree variable’s declaration outside of
the sort method. But if I do, I may have too many Yucca trees.

class Check {
 int number;
 double amount;
 String payee;
 Yucca tree; //This is bad!
 //Each check has its own tree.

 static void sort() {
 if (myCheck.number > 5000) {
 tree.attachHigh(myCheck);
 }
 // ... etc.
 }
}

In this nasty code, each check has its own number, its own amount, its own
payee, and its own tree. But that’s ridiculous! I don’t want to fasten each
check to its own Yucca tree. Everybody knows you’re supposed to sort
checks with just one Yucca tree. (That’s the way the big banks do it.)

When I move the tree variable’s declaration outside of the sort method,
I want to preserve the fact that I have only one tree. (To be more precise, I
have only one tree for the entire Check class.) To make sure that I have only
one tree, I declare the tree variable to be static.

370 Part IV: Using Program Units

class Check {
 int number;
 double amount;
 String payee;
 static Yucca tree; //That's better!

 static void sort() {
 if (myCheck.number > 5000) {
 tree.attachHigh(myCheck);
 }
 // ... etc.
 }
}

For exactly the same reason, I write static double amount when I move
from Listing 18-9 to 18-10.

 To find out more about sorting, read UNIX For Dummies: Quick Reference, 5th
Edition, by Margaret Levine Young and John R. Levine. To learn more about
bank checks, read Managing Your Money Online For Dummies by Kathleen
Sindell. To learn more about trees, read Landscaping For Dummies by Phillip
Giroux, Bob Beckstrom, and Lance Walheim.

Chapter 19

Creating New Java Methods
In This Chapter
▶ Writing methods that work with existing values

▶ Building methods that modify existing values

▶ Making methods that return new values

I
n Chapters 3 and 4, I introduce Java methods. I show you how to create a
main method and how to call the System.out.println method. Between

that chapter and this one, I make very little noise about methods. In Chapter 18,
I introduce a bunch of new methods for you to call, but that’s only half of the
story.

This chapter completes the circle. In this chapter, you create your own Java
methods — not the tired old main method that you’ve been using all along,
but some new, powerful Java methods.

Defining a Method within a Class
In Chapter 18, Figure 18-6 introduces an interesting notion — a notion that’s
at the core of object-oriented programming. Each Java string has its own
equals method. That is, each string has, built within it, the functionality
to compare itself to other strings. That’s an important point. When you do
object-oriented programming, you bundle data and functionality into a lump
called a class. Just remember Barry’s immortal words from Chapter 17:

A class describes the way in which you intend to combine and use pieces
of data.

And why are these words so important? They’re important because, in object-
oriented programming, chunks of data take responsibility for themselves. With
object-oriented programming, everything you have to know about a string is
located in the file String.java. So, if anybody has problems with the strings,
they know just where to look for all the code. That’s great!

372 Part IV: Using Program Units

So this is the deal — objects contain methods. Chapter 18 shows you how
to use an object’s methods, and this chapter shows you how to create an
object’s methods.

Making a method
Imagine a table containing the information about three accounts. (If you have
trouble imagining such a thing, just look at Figure 19-1.) In the figure, each
account has a last name, an identification number, and a balance. In addition
(and here’s the important part), each account knows how to display itself on
the screen. Each row of the table has its own copy of a display method.

Figure 19-1:
A table of
accounts.

The last names in Figure 19-1 may seem strange to you. That’s because I gen-
erated the table’s data randomly. Each last name is a haphazard combination
of three letters — one uppercase letter followed by two lowercase letters.

 Though it may seem strange, generating account values at random is common
practice. When you write new code, you want to test the code to find out if
it runs correctly. You can make up your own data (with values like "Smith",
0000, and 1000.00). But to give your code a challenging workout, you should
use some unexpected values. If you have values from some real-life case stud-
ies, you should use them. But if you don’t have real data, randomly generated
values are easy to create.

To find out how I randomly generate three-letter names, see this chapter’s
“Generating words randomly” sidebar.

I need some code to implement the ideas in Figure 19-1. Fortunately, I have
some code in Listing 19-1.

373 Chapter 19: Creating New Java Methods

Listing 19-1: An Account Class

import java.text.NumberFormat;
import static java.lang.System.out;

class Account {
 String lastName;
 int id;
 double balance;

 void display() {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 out.print("The account with last name ");
 out.print(lastName);
 out.print(" and ID number ");
 out.print(id);
 out.print(" has balance ");
 out.println(currency.format(balance));
 }
}

The Account class in Listing 19-1 defines four things — a lastName, an
id, a balance, and a display. So each instance of Account class has its
own lastName variable, its own id variable, its own balance variable, and
its own display method. These things match up with the four columns in
Figure 19-1.

Examining the method’s header
Listing 19-1 contains the display method’s declaration. Like a main method’s
declaration, the display declaration has a header and a body (see Chapter 4).
The header has two words and some parentheses:

 ✓ The word void tells the computer that, when the display method is
called, the display method doesn’t return anything to the place that
called it.

 Later in this chapter, a method does return something. For now, the
display method returns nothing.

 ✓ The word display is the method’s name.

 Every method must have a name. Otherwise, you don’t have a way to
call the method.

374 Part IV: Using Program Units

 ✓ The parentheses contain all the things you’re going to pass to the
method when you call it.

 When you call a method, you can pass information to that method on the
fly. This display example, with its empty parentheses, looks strange.
That’s because no information is passed to the display method when
you call it. That’s okay. I give a meatier example later in this chapter.

Examining the method’s body
The display method’s body contains some print and println calls.
The interesting thing here is that the body makes reference to the variables
lastName, id, and balance. A method’s body can do that. But with each
object having its own lastName, id, and balance variables, what does a
variable in the display method’s body mean?

Well, when I use the Account class, I create little account objects. Maybe I
create an object for each row of the table in Figure 19-1. Each object has its
own values for the lastName, id, and balance variables, and each object
has its own copy of the display method.

So take the first display method in Figure 19-1 — the method for Aju’s
account. The display method for that object behaves as though it had the
code in Listing 19-2.

Listing 19-2: How the display Method Behaves When No One’s Looking

/*
 * This is not real code:
 */
void display() {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 out.print("The account with last name ");
 out.print("Aju");
 out.print(" and ID number ");
 out.print(9936);
 out.print(" has balance ");
 out.println(currency.format(8734.00));
}

In fact, each of the three display methods behaves as though its body has a
slightly different code. Figure 19-2 illustrates this idea for two instances of the
Account class.

375 Chapter 19: Creating New Java Methods

Figure 19-2:
Two objects,

each with
its own
display

method.

Calling the method
To put the previous section’s ideas into action, you need more code. So the
next listing (see Listing 19-3) creates instances of the Account class.

Listing 19-3: Making Use of the Code in Listing 19-1

import java.util.Random;

class ProcessAccounts {

 public static void main(String args[]) {

 Random myRandom = new Random();
 Account anAccount;

 for (int i = 0; i < 3; i++) {
 anAccount = new Account();

 anAccount.lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');

 anAccount.id = myRandom.nextInt(10000);
 anAccount.balance = myRandom.nextInt(10000);
 anAccount.display();
 }
 }
}

376 Part IV: Using Program Units

Here’s a summary of the action in Listing 19-3:

Do the following three times:
 Create a new object (an instance of
 the Account class).
 Randomly generate values for the object's lastName,
 id and balance.
 Call the object's display method.

The first of the three display calls prints the first object’s lastName, id,
and balance values. The second display call prints the second object’s
lastName, id, and balance values. And so on.

A run of the code from Listing 19-3 is shown in Figure 19-3.

Figure 19-3:
Running

the code in
Listing 19-3.

 Concerning the code in Listing 19-3, your mileage may vary. You don’t see the
same values as the ones in Figure 19-3. In fact, if you run Listing 19-3 more than
once, you (almost certainly) get different three-letter names, different ID num-
bers, and different account balances each time. That’s what happens when a
program generates values randomly.

The flow of control
Suppose that you’re running the code in Listing 19-3. The computer reaches
the display method call:

anAccount.display();

At that point, the computer starts running the code inside the display
method. In other words, the computer jumps to the middle of the Account
class’s code (the code in Listing 19-1).

After executing the display method’s code (that forest of print and println
calls), the computer returns to the point where it departed from in Listing 19-3.
That is, the computer goes back to the display method call and continues on
from there.

377 Chapter 19: Creating New Java Methods

So when you run the code in Listing 19-3, the flow of action in each loop itera-
tion isn’t exactly from the top to the bottom. Instead, the action goes from the
for loop to the display method and then back to the for loop. The whole
business is pictured in Figure 19-4.

Figure 19-4:
The flow

of control
between

Listings 19-1
and 19-3.

Using punctuation
In Listing 19-3, notice the use of dots. To refer to the lastName stored in the
anAccount object, you write

anAccount.lastName

To get the anAccount object to display itself, you write

anAccount.display();

That’s great! When you refer to an object’s variable or call an object’s method,
the only difference is parentheses:

 ✓ To refer to an object’s variable, you don’t use parentheses.

 ✓ To call an object’s method, you use parentheses.

 When you call a method, you put parentheses after the method’s name. You
do this even if you have nothing to put inside the parentheses.

378 Part IV: Using Program Units

The versatile plus sign
The program in Listing 19-3 uses some cute tricks. In Java, you can do two
different things with a plus sign:

 ✓ You can add numbers with a plus sign.

 For example, you can write

numberOfSheep = 2 + 5;

 ✓ You can concatenate strings with a plus sign.

 When you concatenate strings, you scrunch them together, one right
after another. For example, the expression

"Barry" + " " + "Burd"

 scrunches together Barry, a blank space, and Burd. The new scrunched-
up string is (you guessed it) Barry Burd.

In Listing 19-3, the statement

anAccount.lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');

has many plus signs, and some of the plus signs concatenate things together.
The first thing is a mysterious empty string (""). This empty string is invisible,
so it never gets in the way of your seeing the second, third, and fourth things.

Onto the empty string, the program concatenates a second thing. This second
thing is the value of the expression (char) (myRandom.nextInt(26) +
'A'). The expression may look complicated, but it’s really no big deal. This
expression represents an uppercase letter (any uppercase letter, generated
randomly).

Onto the empty string and the uppercase letter, the program concatenates a
third thing. This third thing is the value of the expression (char) (myRandom.
nextInt(26) + 'a'). This expression represents a lowercase letter (any
lowercase letter, generated randomly).

Onto all this stuff, the program concatenates another lowercase letter. So alto-
gether, you have a randomly generated three-letter name. For more details,
see the upcoming sidebar.

379 Chapter 19: Creating New Java Methods

Generating words randomly
Most programs don’t work correctly the first time you run them, and some programs don’t work
without extensive trial and error. This section’s code is a case in point.

To write this section’s code, I needed a way to generate three-letter words randomly. After about a
dozen attempts, I got the code to work. But I didn’t stop there. I kept working for a few hours look-
ing for a simple way to generate three-letter words randomly. In the end, I settled on the following
code (in Listing 19-3):

anAccount.lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');

This code isn’t simple, but it’s not nearly as bad as my original working version. Anyway, here’s
how the code works:

 ✓ Each call to my Random.nextInt(26)generates a number from 0 to 25 .

 ✓ Adding'A'gives you a number from 65 to 90 .

 To store a letter 'A', the computer puts the number 65 in its memory. That’s why adding 'A'
to 0 gives you 65 and why adding 'A' to 25 gives you 90. (For more information on letters being
stored as numbers, see the discussion of Unicode characters at the end of Chapter 8.)

 ✓ Applying(char)to a number turns the number into a char value .

 To store the letters 'A' through 'Z', the computer puts the numbers 65 through 90 in its
memory. So applying (char) to a number from 65 to 90 turns the number into an uppercase
letter. For more information about applying things like (char), see the discussion of casting
in Chapter 7.

Pause for a brief summary. The expression (char) (myRandom.nextInt(26) + 'A')
represents a randomly generated uppercase letter. In a similar way, (char) (myRandom.
nextInt(26) + 'a') represents a randomly generated lowercase letter.

Watch out! The next couple of steps can be tricky.

 ✓ Java doesn’t allow you to assign a char value to a string variable .

 So in Listing 19-3, the following statement would lead to a compiler error:

//Bad statement:
anAccount.lastName = (char) (myRandom.nextInt(26) + 'A');

 ✓ In Java, you can use a plus sign to add a char value to a string . When you do, the result is a
string .

 So "" + (char) (myRandom.nextInt(26) + 'A') is a string containing one
randomly generated uppercase character. And when you add (char) (myRandom.
nextInt(26) + 'a') onto the end of that string, you get another string — a string
containing two randomly generated characters. Finally, when you add another (char)

(continued)

380 Part IV: Using Program Units

 In Listing 19-3, the statement anAccount.balance = myRandom.next
Int(10000) assigns an int value to balance. But balance is a double
variable, not an int variable. That’s okay. In a rare case of permissiveness,
Java allows you to assign an int value to a double variable. The result of the
assignment is no big surprise. If you assign the int value 8734 to the double
variable balance, the value of balance becomes 8734.00. The result is
shown on the first line of Figure 19-3.

 Using the double type to store an amount of money is generally a bad idea.
In this book, I use double to keep the examples as simple as possible. But the
int type is better for money values, and the BigDecimal type is even better.
For more details, see Chapter 7.

Let the Objects Do the Work
When I was a young object, I wasn’t as smart as the objects you have nowa-
days. Consider, for example, the object in Listing 19-4. Not only does this
object display itself, but the object can also fill itself with values.

Listing 19-4: A Class with Two Methods

import java.util.Random;
import java.text.NumberFormat;
import static java.lang.System.out;

class BetterAccount {
 String lastName;
 int id;
 double balance;

 void fillWithData() {
 Random myRandom = new Random();

(myRandom.nextInt(26) + 'a') onto the end of that string, you get a string contain-
ing three randomly generated characters. So you can assign that big string to anAccount.
lastName. That’s how the statement in Listing 19-3 works.

When you write a program like the one in Listing 19-3, you have to be very careful with numbers,
char values, and strings. I don’t do this kind of programming every day of the week. So before I got
this section’s example to work, I had many false starts. That’s okay. I’m very persistent.

(continued)

381 Chapter 19: Creating New Java Methods

 lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');

 id = myRandom.nextInt(10000);
 balance = myRandom.nextInt(10000);
 }

 void display() {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 out.print("The account with last name ");
 out.print(lastName);
 out.print(" and ID number ");
 out.print(id);
 out.print(" has balance ");
 out.println(currency.format(balance));
 }
}

I wrote some code to use the class in Listing 19-4. This new code is in
Listing 19-5.

Listing 19-5: This Is So Cool!

class ProcessBetterAccounts {

 public static void main(String args[]) {

 BetterAccount anAccount;

 for (int i = 0; i < 3; i++) {
 anAccount = new BetterAccount();
 anAccount.fillWithData();
 anAccount.display();
 }
 }
}

Listing 19-5 is pretty slick. Because the code in Listing 19-4 is so darn smart,
the new code in Listing 19-5 has very little work to do. This new code just
creates a BetterAccount object and then calls the methods in Listing 19-4.
When you run all this stuff, you get results like the ones in Figure 19-3.

382 Part IV: Using Program Units

Passing Values to Methods
Think about sending someone to the supermarket to buy bread. When you do
this, you say, “Go to the supermarket and buy some bread.” (Try it at home.
You’ll have a fresh loaf of bread in no time at all!) Of course, some other time,
you send that same person to the supermarket to buy bananas. You say, “Go
to the supermarket and buy some bananas.” And what’s the point of all this?
Well, you have a method, and you have some on-the-fly information that
you pass to the method when you call it. The method is named “Go to the
supermarket and buy some. . . .” The on-the-fly information is either “bread”
or “bananas,” depending on your culinary needs. In Java, the method calls
would look like this:

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas);

The things in parentheses are called parameters or parameter lists. With
parameters, your methods become much more versatile. Instead of getting
the same thing each time, you can send somebody to the supermarket to buy
bread one time, bananas another time, and birdseed the third time. When
you call your goToTheSupermarketAndBuySome method, you decide right
there and then what you’re going to ask your pal to buy.

These concepts are made more concrete in Listings 19-6 and 19-7.

Listing 19-6: Adding Interest

import java.text.NumberFormat;
import static java.lang.System.out;

class NiceAccount {
 String lastName;
 int id;
 double balance;

 void addInterest(double rate) {
 out.print("Adding ");
 out.print(rate);
 out.println(" percent...");

 balance += balance * (rate / 100.0);
 }

 void display() {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 out.print("The account with last name ");
 out.print(lastName);
 out.print(" and ID number ");

383 Chapter 19: Creating New Java Methods

 out.print(id);
 out.print(" has balance ");
 out.println(currency.format(balance));
 }
}

Listing 19-7: Calling the addInterest Method

import java.util.Random;

class ProcessNiceAccounts {

 public static void main(String args[]) {
 Random myRandom = new Random();
 NiceAccount anAccount;
 double interestRate;

 for (int i = 0; i < 3; i++) {
 anAccount = new NiceAccount();

 anAccount.lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');
 anAccount.id = myRandom.nextInt(10000);
 anAccount.balance = myRandom.nextInt(10000);

 anAccount.display();

 interestRate = myRandom.nextInt(5);
 anAccount.addInterest(interestRate);

 anAccount.display();
 System.out.println();
 }
 }
}

In Listing 19-7, the line

anAccount.addInterest(interestRate);

plays the same role as the line goToTheSupermarketAndBuySome(bread)
in my little supermarket example. The word addInterest is a method name,
and the word interestRate in parentheses is a parameter. Taken as a whole,
this statement tells the code in Listing 19-6 to execute its addInterest
method. This statement also tells Listing 19-6 to use a certain number
(whatever value is stored in the interestRate variable) in the method’s
calculations. The value of interestRate can be 1.0, 2.0, or whatever other
value you get by calling myRandom.nextInt(5). In the same way, the
goToTheSupermarketAndBuySome method works for bread, bananas, or
whatever else you need from the market.

384 Part IV: Using Program Units

The next section has a detailed description of addInterest and its action. In
the meantime, a run of the code in Listings 19-6 and 19-7 is shown in Figure 19-5.

Figure 19-5:
Running

the code in
Listing 19-7.

 Java has very strict rules about the use of types. For example, you can’t assign
a double value (like 3.14) to an int variable. (The compiler simply refuses
to chop off the .14 part. You get an error message. So what else is new?) But
Java isn’t completely unreasonable about the use of types. Java allows you
to assign an int value (like myRandom.nextInt(5)) to a double variable
(like interestRate). If you assign the int value 2 to the double variable
interestRate, then the value of interestRate becomes 2.0. The result is
shown on the second line of Figure 19-5.

Handing off a value
When you call a method, you can pass information to that method on the fly.
This information is in the method’s parameter list. Listing 19-7 has a call to
the addInterest method:

anAccount.addInterest(interestRate);

The first time through the loop, the value of interestRate is 2.0. (Remember,
I’m using the data in Figure 19-5.) So at that point in the program’s run, the
method call behaves as though it’s the following statement:

anAccount.addInterest(2.0);

The computer is about to run the code inside the addInterest method (a
method in Listing 19-6). But first, the computer passes the value 2.0 to the
parameter in the addInterest method’s header. So inside the addInterest
method, the value of rate becomes 2.0. For an illustration of this idea, see
Figure 19-6.

385 Chapter 19: Creating New Java Methods

Figure 19-6:
Passing a
value to a
method’s

parameter.

Here’s something interesting. The parameter in the addInterest method’s
header is rate. But, inside the ProcessNiceAccounts class, the parameter
in the method call is interestRate. That’s okay. In fact, it’s standard practice.

In Listings 19-6 and 19-7, the names of the parameters don’t have to be
the same. The only thing that matters is that both parameters (rate and
interestRate) have the same type. In Listings 19-6 and 19-7, both of these
parameters are of type double. So everything is fine.

Inside the addInterest method, the += assignment operator adds balance
* (rate / 100.0) to the existing balance value. For some info about the
+= assignment operator, see Chapter 7.

Working with a method header
In the next few bullets, I make some observations about the addInterest
method header (in Listing 19-6):

 ✓ The word void tells the computer that when the addInterest
method is called, the addInterest method doesn’t send a value
back to the place that called it.

 The next section has an example in which a method sends a value back.

 ✓ The word addInterest is the method’s name.

 That’s the name you use to call the method when you’re writing the
code for the ProcessNiceAccounts class (see Listing 19-7).

 ✓ The parentheses in the header contain placeholders for all the things
you’re going to pass to the method when you call it.

386 Part IV: Using Program Units

 When you call a method, you can pass information to that method on the
fly. This information is the method’s parameter list. The addInterest
method’s header says that the addInterest method takes one piece of
information, and that piece of information must be of type double:

void addInterest(double rate)

 Sure enough, if you look at the call to addInterest (down in the
ProcessNiceAccounts class’s main method), that call has the variable
interestRate in it. And interestRate is of type double. When I call
getInterest, I’m giving the method a value of type double.

How the method uses the object’s values
The addInterest method in Listing 19-6 is called three times from the main
method in Listing 19-7. The actual account balances and interest rates are dif-
ferent each time:

 ✓ In the first call of Figure 19-5, the balance is 8983.00, and the interest
rate is 2.0.

 When this call is made, the expression balance * (rate / 100.0)
stands for 8983.00 * (2.0 / 100.00). See Figure 19-7.

Figure 19-7:
Cbj’s

account
and Bry’s
account.

387 Chapter 19: Creating New Java Methods

 ✓ In the second call of Figure 19-5, the balance is 3756.00, and the inter-
est rate is 0.0.

 When the call is made, the expression balance * (rate / 100.0)
stands for 3756.00 * (0.0 / 100.00). Again, see Figure 19-7.

 ✓ In the third call of Figure 19-5, the balance is 8474.00, and the interest
rate is 3.0.

 When the addInterest call is made, the expression balance *
(rate / 100.0) stands for 8474.00 * (3.0 / 100.00).

Getting a Value from a Method
Say that you’re sending a friend to buy groceries. You make requests for gro-
ceries in the form of method calls. You issue calls such as

goToTheSupermarketAndBuySome(bread);
goToTheSupermarketAndBuySome(bananas);

The things in parentheses are parameters. Each time you call your goToThe
SupermarketAndBuySome method, you put a different value in the method’s
parameter list.

Now what happens when your friend returns from the supermarket? “Here’s
the bread you asked me to buy,” says your friend. As a result of carrying out
your wishes, your friend returns something to you. You made a method call,
and the method returns information (or better yet, the method returns some
food).

The thing returned to you is called the method’s return value, and the type of
thing returned to you is called the method’s return type.

An example
To see how return values and a return types work in a real Java program,
check out the code in Listings 19-8 and 19-9.

388 Part IV: Using Program Units

Listing 19-8: A Method That Returns a Value

import java.text.NumberFormat;
import static java.lang.System.out;

class GoodAccount {
 String lastName;
 int id;
 double balance;

 double getInterest(double rate) {
 double interest;

 out.print("Adding ");
 out.print(rate);
 out.println(" percent...");

 interest = balance * (rate / 100.0);
 return interest;
 }

 void display() {
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();

 out.print("The account with last name ");
 out.print(lastName);
 out.print(" and ID number ");
 out.print(id);
 out.print(" has balance ");
 out.println(currency.format(balance));
 }
}

Listing 19-9: Calling the Method in Listing 19-8

import java.util.Random;
import java.text.NumberFormat;

class ProcessGoodAccounts {

 public static void main(String args[]) {
 Random myRandom = new Random();
 NumberFormat currency =
 NumberFormat.getCurrencyInstance();
 GoodAccount anAccount;
 double interestRate;
 double yearlyInterest;

389 Chapter 19: Creating New Java Methods

 for (int i = 0; i < 3; i++) {
 anAccount = new GoodAccount();

 anAccount.lastName = "" +
 (char) (myRandom.nextInt(26) + 'A') +
 (char) (myRandom.nextInt(26) + 'a') +
 (char) (myRandom.nextInt(26) + 'a');
 anAccount.id = myRandom.nextInt(10000);
 anAccount.balance = myRandom.nextInt(10000);

 anAccount.display();

 interestRate = myRandom.nextInt(5);
 yearlyInterest =
 anAccount.getInterest(interestRate);

 System.out.print("This year's interest is ");
 System.out.println
 (currency.format(yearlyInterest));
 System.out.println();
 }
 }
}

To see a run of code from Listings 19-8 and 19-9, take a look at Figure 19-8.

Figure 19-8:
Running

the code in
Listing 19-9.

How return types and return values work
I want to trace a piece of the action in Listings 19-8 and 19-9. For input data,
I use the first set of values in Figure 19-8.

390 Part IV: Using Program Units

Here’s what happens when getInterest is called (you can follow along in
Figure 19-9):

 ✓ The value of balance is 9508.00, and the value of rate is 2.0. So the
value of balance * (rate / 100.0) is 190.16 — one hundred ninety
dollars and sixteen cents.

 ✓ The value 190.16 gets assigned to the interest variable, so the statement

return interest;

 has the same effect as

return 190.16;

 ✓ The return statement sends this value 190.16 back to the code that
called the method. At that point in the process, the entire method call in
Listing 19-9 — anAccount.getInterest(interestRate) — takes on
the value 190.16.

 ✓ Finally, the value 190.16 gets assigned to the variable yearlyInterest.

Figure 19-9:
A method
call is an

expression
with a value.

 If a method returns anything, then a call to the method is an expression with
a value. That value can be printed, assigned to a variable, added to something
else, or whatever. Anything you can do with any other kind of value, you can
do with a method call.

391 Chapter 19: Creating New Java Methods

Working with the method header (again)
When you create a method or a method call, you have to be careful to use
Java’s types consistently. So make sure that you check for the following:

 ✓ In Listing 19-8, the getInterest method’s header starts with the word
double. So when the method is executed, it should send a double
value back to the place that called it.

 ✓ Again in Listing 19-8, the last statement in the getInterest method is
return interest. So the method returns whatever value is stored in
the interest variable, and the interest variable has type double. So
far, so good.

 ✓ In Listing 19-9, the value returned by the call to getInterest is assigned
to a variable named yearlyInterest. Sure enough, yearlyInterest
is of type double.

That settles it! The use of types in the handling of method getInterest is
consistent in Listings 19-8 and 19-9. I’m thrilled!

392 Part IV: Using Program Units

Chapter 20

Oooey GUI Was a Worm
In This Chapter
▶ Swinging into action

▶ Displaying an image

▶ Using buttons and text boxes

T
here’s a wonderful old joke about a circus acrobat jumping over mice.
Unfortunately, I’d get sued for copyright infringement if I included the

joke in this book.

Anyway, the joke is about starting small and working your way up to bigger
things. That’s what you do when you read Beginning Programming with Java
For Dummies, 4th Edition.

Most of the programs in this book are text-based. A text-based program has
no windows, no dialog boxes, nothing of that kind. With a text-based pro-
gram, the user types characters in the Console view, and the program dis-
plays output in the same Console view.

These days, very few publicly available programs are text-based. Almost all
programs use a GUI — a Graphical User Interface. So if you’ve read every word
of this book up to now, you’re probably saying to yourself, “When am I going
to find out how to create a GUI?”

Well, now’s the time! This chapter introduces you to the world of GUI pro-
gramming in Java.

 You can see GUI versions of many examples from this book by visiting the
book’s website (allmycode.com/BeginProg).

http://allmycode.com/beginprog

394 Part IV: Using Program Units

The Java Swing Classes
Java’s Swing classes create graphical objects on a computer screen. The
objects can include buttons, icons, text fields, check boxes, and other good
things that make windows so useful.

The name “Swing” isn’t an acronym. When the people at Sun Microsystems
were first creating the code for these classes, one of the developers named
it “Swing” because swing music was enjoying a nostalgic revival. And yes, in
addition to String and Swing, the standard Java API has a Spring class.
But that’s another story.

Actually, Java’s API has several sets of windowing components. For details
see the “Java GUIs” sidebar.

Java GUIs
Java has four (”count ’em, four”) sets of classes
for creating GUI applications.

 ✓ The Abstract Window Toolkit (AWT): The
original set of classes, dating back to
JDK 1.0.

 Classes in this set belong to packages
whose names begin with java.awt.
Components in this set have names like
Button, TextField, Frame, and so on.

 Each component in an AWT program has
a peer — a companion component that
belongs to the computer’s own operating
system. For example, when you create an
AWT Button, a Mac computer creates its
own kind of button to be displayed on the
user’s screen. When the same program
runs on a Windows computer, the Windows
computer creates a different kind of button
(a Windows button) to display on the com-
puter’s screen. The Java code in the AWT
interacts with the Mac or Windows button,
adding additional functionality where func-
tionality is needed.

 The AWT implements only the kinds of com-
ponents that were available on all common
operating systems in the mid-1990s. So,
using AWT, you can add a button to your
application, but you can’t easily add a table
or a tree.

 ✓ Java Swing: A set of classes created to fix
some of the difficulties posed by the use of
the AWT. Swing was introduced in J2SE 1.2.

 Classes in this set belong to packages
whose names begin with javax.swing.
Components in this set have names like
JButton, JTextField, JFrame, and
so on.

 Unlike an old AWT component, a Swing
component has no peer. When you create a
JButton in your Java program, the com-
puter’s operating system doesn’t create a
button of its own. Instead, the JButton
that you see is a pure Java object. Java’s
visual rendering code draws this object on
a window. This is both good news and bad
news. The good news is, a Swing program

395 Chapter 20: Oooey GUI Was a Worm

Showing an image on the screen
The program in Listing 20-1 displays a window on your computer screen. To
see the window, look at Figure 20-1.

The code in Listing 20-1 has very little logic of its own. Instead, this code
pulls together a bunch of classes from the Java API.

looks the same on every operating system.
In a Swing program, you can create table
components and tree components because
Java simply draws them in the computer’s
window. The bad news is, Swing compo-
nents aren’t pretty. A JButton looks prim-
itive and crude compared to a Mac button
or a Windows button.

 Java’s Swing classes replace some (but not
all) of the classes in the older AWT. To use
some of the Swing classes, you have to call
on some of the old AWT classes.

 ✓ Eclipse’s Standard Widget Toolkit (SWT):
An alternative to Java’s AWT and Swing
sets. Despite the word “Standard” in SWT’s
name, SWT is not part of Oracle’s standard
Java.

 Classes in this set belong to packages
whose names begin with org.eclipse.
swt.

 The SWT takes an “all or nothing” approach.
When you create an exotic component that
a particular operating system doesn’t have,
the SWT draws the component the way
Swing does. (That is, SWT does all the work
of creating and managing the component.)

 But when you create a component that’s built
into a computer’s operating system, SWT
displays the operating system’s component

and adds no additional functionality. Unlike
the AWT, the SWT creates an operating
system button and then lets the button do its
own thing. This carefully defined window of
interaction between SWT and the operating
system overcomes many of the difficulties
posed by the design of the AWT.

 (FYI: A Google Trends search in 2014
puts Swing way ahead of AWT and SWT
in terms of interest by Java develop-
ers. See www.bogotobogo.com/
JavaAppletWebStart/awt_
swing_swt.php.)

 ✓ JavaFX: The newest set of GUI classes in
Oracle standard Java. JavaFX comes with
new(er) versions of Java 7 and with all ver-
sions of Java 8.

 Classes in this set belong to packages
whose names begin with javafx.

 JavaFX supports over 60 kinds of compo-
nents. (Sure, you want a Button compo-
nent. But do you also want an Accordion
component? JavaFX has one.) In addition,
JavaFX supports multi-touch operations
and takes advantage of each processor’s
specialized graphics capabilities.

 For more information about JavaFX, see
this chapter’s “Code Soup: Mixing XML with
Java” section.

http://www.bogotobogo.com/JavaAppletWebStart/awt_swing_swt.php
http://www.bogotobogo.com/JavaAppletWebStart/awt_swing_swt.php
http://www.bogotobogo.com/JavaAppletWebStart/awt_swing_swt.php

396 Part IV: Using Program Units

Listing 20-1: Creating a Window with an Image in It

import javax.swing.JFrame;
import javax.swing.ImageIcon;
import javax.swing.JLabel;

class ShowPicture {

 public static void main(String args[]) {
 JFrame frame = new JFrame();
 ImageIcon icon = new ImageIcon("androidBook.jpg");
 JLabel label = new JLabel(icon);

 frame.add(label);
 frame.setDefaultCloseOperation
 (JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

Figure 20-1:
What a nice

window!

397 Chapter 20: Oooey GUI Was a Worm

Back in Listing 17-3 (in Chapter 17), I created an instance of the Purchase
class with the line

Purchase onePurchase = new Purchase();

So in Listing 20-1, I do the same kind of thing. I create instances of the JFrame,
ImageIcon, and JLabel classes with the following lines:

JFrame frame = new JFrame();
ImageIcon icon = new ImageIcon("androidBook.jpg");
JLabel label = new JLabel(icon);

Here’s some gossip about each of these lines:

 ✓ A JFrame is like a window (except that it’s called a JFrame, not a
“window”). In Listing 20-1, the line

JFrame frame = new JFrame();

 creates a JFrame object, but this line doesn’t display the JFrame object
anywhere. (The displaying comes later in the code.)

 ✓ An ImageIcon object is a picture. At the root of the program’s project
directory, I have a file named androidBook.jpg. That file contains the
picture shown in Figure 20-1. So in Listing 20-1, the line

ImageIcon icon = new ImageIcon("androidBook.jpg");

 creates an ImageIcon object — an icon containing the androidBook.
jpg picture.

 For some reason that I’ll never understand, you may not want to use my
androidBook.jpg image file when you run Listing 20-1. You can use
almost any .gif, .jpg, or .png file in place of my (lovely) Android book
cover image. To do so, drag your own image file to Eclipse’s Package
Explorer. (Drag it to the root of this example’s project folder.) Then, in
Eclipse’s editor, change the name androidBook.jpg to your own image
file’s name. That’s it!

 ✓ I need a place to put the icon. I can put it on something called a JLabel.
So in Listing 20-1, the line

JLabel label = new JLabel(icon);

 creates a JLabel object and puts the androidBook.jpg icon on the
new label’s face.

If you read the previous bullets, you may get a false impression. The wording
may suggest that the use of each component (JFrame, ImageIcon, JLabel,
and so on) is a logical extension of what you already know. “Where do you put
an ImageIcon? Well of course, you put it on a JLabel.” When you’ve worked
long and hard with Java’s Swing components, all these things become natural
to you. But until then, you look everything up in Java’s API documentation.

398 Part IV: Using Program Units

 You never need to memorize the names or features of Java’s API classes.
Instead, you keep Java’s API documentation handy. When you need to know
about a class, you look it up in the documentation. If you need a certain class
often enough, you’ll remember its features. For classes that you don’t use
often, you always have the docs.

For tips on using Java’s API documentation, see my article “Making
Sense of Java’s API Documentation,” at www.dummies.com/extras/
beginningprogrammingwithjava. To find gobs of sample Java code,
visit some of the websites listed in Chapter 21.

Just another class
What is a JFrame? Like any other class, a JFrame has several parts. For a
simplified view of some of these parts, see Figure 20-2.

Figure 20-2:
A simplified

depic-
tion of the
JFrame

class.

Like the String in Figure 18-6 in Chapter 18, each object formed from the
JFrame class has both data parts and method parts. The data parts include the
frame’s height and width. The method parts include add, setDefaultClose
Operation, pack, and setVisible. All told, the JFrame class has about
320 methods.

For technical reasons too burdensome for this book, you can’t use dots to
refer to a frame’s height or width. But you can call many JFrame methods
with those infamous dots. In Listing 20-1, I call the frame’s methods by writ-
ing add(label), frame.setDefaultCloseOperation(JFrame.EXIT_
ON_CLOSE), frame.pack(), and frame.setVisible(true).

http://www.dummies.com/extras/beginningprogrammingwithjava
http://www.dummies.com/extras/beginningprogrammingwithjava

399 Chapter 20: Oooey GUI Was a Worm

Here’s the scoop on the JFrame methods in Listing 20-1:

 ✓ The call frame.add(label) plops the label onto the frame. The label
displays my androidBook.jpg picture, so this call makes the picture appear
on the frame.

 ✓ A call to frame.setDefaultCloseOperation tells Java what to do
when you try to close the frame. (In Windows, you click the “x” in the
upper-right corner by the title bar. On a Mac, the “x” is in the frame’s
upper-left corner.) For a frame that’s part of a larger application, you
may want the frame to disappear when you click the “x,” but you prob-
ably don’t want the application to stop running.

 But in Listing 20-1, the frame is the entire application — the whole
enchilada. So when you click the “x,” you want the Java Virtual Machine
to shut itself down. To make this happen, you call the setDefaultClose
Operation method with parameter JFrame.EXIT_ON_CLOSE. The
other alternatives are as follows:

	 •	JFrame.HIDE_ON_CLOSE: The frame disappears, but it still exists
in the computer’s memory.

	 •	JFrame.DISPOSE_ON_CLOSE: The frame disappears and no longer
exists in the computer’s memory.

	 •	JFrame.DO_NOTHING_ON_CLOSE: The frame still appears, still
exists, and still does everything it did before you clicked the “x.”
Nothing happens when you click “x.” So with this DO_NOTHING_
ON_CLOSE option, you can become very confused.

 If you don’t call setDefaultCloseOperation, Java automatically
chooses the HIDE_ON_CLOSE option. When you click the “x,” the frame
disappears, but the Java program keeps running. Of course, with no
visible frame, the running of Listing 20-1 doesn’t do much. The only
noticeable effect of the run is your development environment’s behavior.
With Eclipse, the little square in the Console view’s toolbar retains its
bright red color. When you hover over the square, you see the Terminate
tooltip. So to end the Java program’s run (and to return the square to its
washed-out reddish-gray hue), simply click this little square.

 ✓ A frame’s pack method shrink-wraps the frame around whatever has
been added to the frame. Without calling pack, the frame can be much
bigger or much smaller than is necessary.

 Unfortunately, the default is to make a frame much smaller than neces-
sary. If, in Listing 20-1, you forget to call frame.pack, you get the tiny
frame shown in Figure 20-3. Sure, you can enlarge the frame by dragging
the frame’s edges with your mouse. But why should you have to do that?
Just call frame.pack, instead.

400 Part IV: Using Program Units

Figure 20-3:
A frame that
hasn’t been

packed.

 ✓ Calling setVisible(true) makes the frame appear on your screen. If
you forget to call setVisible(true) (and I often do), when you run
the code in Listing 20-1, you’ll see nothing on your screen. It’s always so
disconcerting until you figure out what you did wrong.

Constructor Calls
In Listing 17-3 (in Chapter 17), I created an instance of the Purchase class
with the line

Purchase onePurchase = new Purchase();

The code in Listing 20-1 does the same kind of thing. In Listing 20-1, I create
an instance of the JFrame class with the following line:

JFrame frame = new JFrame();

Compare Figure 17-4 in Chapter 17 with this chapter’s Figure 20-4.

Figure 20-4:
An object

created
from the
JFrame

class.

401 Chapter 20: Oooey GUI Was a Worm

In both figures, a new SomethingOrOther() call creates an object from an
existing class.

 ✓ In Chapter 17, I create an instance of my Purchase class.

 This object represents an actual purchase (with a purchase amount, a
tax, and so on).

 ✓ In this chapter, I create an instance of the JFrame class.

 This object represents a frame on the computer screen (a frame with bor-
ders, a minimize button, and so on). In a more complicated application —
an app that displays several frames — the code might create several
objects from a class such as JFrame (see Figure 20-5).

Figure 20-5:
Creating

three
objects

from the
JFrame

class.

In Listing 20-1, the lines

JFrame frame = new JFrame();
ImageIcon icon = new ImageIcon("androidBook.jpg");
JLabel label = new JLabel(icon);

look as though they contain method calls. After all, a method call consists of
a name followed by parentheses. You might put some parameters between
the open- and close-parentheses. The expression keyboard.nextLine() is
a call to a method named nextLine. So in Listing 20-1, is JFrame() a call to
a method named JFrame? No, it’s not.

402 Part IV: Using Program Units

In the expression new JFrame(), Java’s new keyword signals a call to a
constructor. A constructor is like a method, except that a constructor’s name
is the same as the name of a Java class. Java’s standard API contains classes
named JFrame, ImageIcon, and JLabel, and the code in Listing 20-1 calls
the JFrame, ImageIcon, and JLabel constructors.

As the terminology suggests, a constructor is a piece of code that constructs
an object. So in Listing 20-1, when you call

JFrame frame = new JFrame();

you make a frame variable refer to a newly constructed object (an object
constructed from the JFrame class).

Constructors and methods have a lot in common with one another. You can’t
call a method without having a corresponding method declaration some-
where in the code. (In the case of Java’s nextLine method, the method dec-
laration lives somewhere inside Java’s enormous bunch of API classes.) The
same is true of constructors. You can’t call new JFrame() without having a
constructor for the JFrame class somewhere in your code. And, sure enough,
inside the Java API class, you can find a declaration for the JFrame() con-
structor. The code looks something like this:

public class JFrame {
 int height;
 int width;
 public Component add() ...
 public void setDefaultCloseOperation() ...
 public void pack() ...
 public void setVisible() ...
 ...

 /**
 * Constructs a new frame that is initially invisible.
 */
 public JFrame() {
 ...
 }
 ...
}

The constructor declaration looks almost like a method declaration. But
notice that the constructor declaration doesn’t start with public void
JFrame() or with public double JFrame() or with public anything
JFrame(). Aside from the optional word public, a constructor declaration
contains only the name of the class whose object is being constructed. More
on this in the next section.

403 Chapter 20: Oooey GUI Was a Worm

The Swing Classes: Round 2
In your Java-related travels, you’ll see several variations on the code in
Listing 20-1. This section explores one such variation.

This section’s example does exactly what the previous section’s example
does. The only difference is the way the two examples deal with the JFrame
class. This section’s code is in Listing 20-2.

Listing 20-2: Extending Java’s JFrame Class

import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;

class ShowPicture {

 public static void main(String args[]) {
 new MyFrame();
 }
}

class MyFrame extends JFrame {

 MyFrame() {
 ImageIcon icon = new ImageIcon("androidBook.jpg");
 JLabel label = new JLabel(icon);
 add(label);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 pack();
 setVisible(true);
 }
}

 When you view Listing 20-2 in the Eclipse editor, you see a little yellow marker.
A yellow marker represents a warning rather than an error, so you can ignore
the warning and still run your code. If you hover over the marker, you see a tip
about something called a serialVersionUID. A serialVersionUID is a number that
helps Java avoid version conflicts when you send different copies of an object
from one place to another. You can get rid of the warning by applying one of
Eclipse’s quick fixes, but if you’re not fussy, don’t bother with these quick fixes.

 For information about Eclipse’s Quick Fix feature, refer to Chapter 3.

Extending a class
In Listing 20-2, the words extends JFrame are particularly important. When
you see Java’s extends keyword, imagine replacing that keyword with the
phrase “is a kind of.”

public class MyFrame is a kind of JFrame {

404 Part IV: Using Program Units

When you type MyFrame extends JFrame, you declare that your new
MyFrame class has all the methods and other things that are built into Java’s
own JFrame class, and possibly more. For example, a JFrame instance
has setDefaultCloseOperation, pack, and setVisible methods, so
every new MyFrame instance has setDefaultCloseOperation, pack, and
setVisible methods (see Figure 20-6).

Figure 20-6:
A MyFrame

instance
has many
methods.

When you put the words extends JFrame in your code, you get all of the
JFrame methods for free. The MyFrame class’s code doesn’t need decla-
rations for methods, such as setDefaultCloseOperation, pack, and
setVisible. Those declarations are already in the JFrame class in Java’s
API. The only declarations in the MyFrame class’s code are for brand-new
things — things that are specific to your newly declared MyFrame class. It’s
as though Listing 20-2 contained the following information:

public class MyFrame is a kind of JFrame {

 And in addition what's in JFrame, MyFrame also has
 a brand new constructor:
 public MyFrame() {
 // Etc.
 }
}

405 Chapter 20: Oooey GUI Was a Worm

In Listing 20-2, the words new MyFrame() get the MyFrame constructor to
do its work. And the constructor in Listing 20-2 does quite a bit of work! The
constructor does the stuff that the main method does in Listing 20-1.

 ✓ The constructor creates an ImageIcon containing the androidBook.
jpg picture.

 ✓ The constructor creates a JLabel object and puts the androidBook.
jpg icon on the new label’s face.

 ✓ The constructor adds the JLabel object.

 Time out! What’s being added to what? In Listing 20-1, the statement

frame.add(label);

 adds the JLabel object to the frame. But in Listing 20-2, there’s no
frame variable. In Listing 20-2, all you have is

add(label);

 Well, here’s the good news: Inside a constructor declaration, the object
that you’re constructing is “a given.” You don’t name that new object in
order to refer to that new object. It’s as though the constructor’s code
looked like this:

MyFrame() {
 ImageIcon icon = new ImageIcon("androidBook.jpg");
 JLabel label = new JLabel(icon);
 new_frame_that_is_being_constructed.add(label);
 new_frame_that_is_being_constructed.
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 new_frame_that_is_being_constructed.pack();
 new_frame_that_is_being_constructed.
 setVisible(true);
}

Here’s how the constructor in Listing 20-2 finishes its work:

 • The constructor adds the JLabel object to the MyFrame object
that’s being constructed.

 • The constructor tells the Java Virtual Machine to shut itself down
when you close the frame.

 • The constructor shrink-wraps the frame around the image that
appears on the frame.

 • The constructor makes the frame appear on your screen.

The extends keyword adds a very important idea to Java programming — the
notion of inheritance. In Listing 20-2, the newly created MyFrame class inherits
the methods (and other things) that are declared in the existing JFrame class.
Inheritance is a pivotal feature of an object-oriented programming language.

406 Part IV: Using Program Units

Code Soup: Mixing XML with Java
Go back and feast your eyes one more time on the code in Listing 20-1. Despite
Java’s object-oriented flavor, the code displays a window using a “do this, then
do that” approach.

Here's how you show a picture:
 Construct a frame
 Construct an icon containing a certain image
 Construct a label containing the icon
 Add the icon to the frame
 ...
 Pack the frame
 Make the frame be visible

This “do this, then do that” approach is called procedural programming.

Now imagine you’re at the Louvre looking at the Mona Lisa. You don’t think
“Da Vinci added a face, then he put a smile on the face, then he added a body,
and then a background.” The painting doesn’t progress from one action to
another. Instead, the painting simply is.

In the same way, a window in a GUI application doesn’t need a procedural
progression. Instead, you can describe a window declaratively. You write
code that says “Here’s how the window looks.” The Java Virtual Machine uses
your description to decide (on its own) what to display and when.

Consider, for example, the grid in Figure 20-7.

Figure 20-7:
Names

and phone
numbers.

The following Swing code creates a grid like the one in Figure 20-7. Don’t look
at all the details in the code. Instead, notice all the verbs: “set the layout
to a new GridLayout, add a label to the frame, set the font, pack the frame,
and so on.” It’s all procedural.

import java.awt.Font;
import java.awt.GridLayout;

import javax.swing.JFrame;
import javax.swing.JLabel;

407 Chapter 20: Oooey GUI Was a Worm

public class Main {

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 frame.setLayout(new GridLayout(4, 2));

 JLabel labels[] =
 { new JLabel("Name"), new JLabel("Phone"),
 new JLabel("Alice"), new JLabel("555-1234"),
 new JLabel("Bob"), new JLabel("555-4321"),
 new JLabel("Carol"), new JLabel("555-3000") };

 frame.add(labels[0]);
 frame.add(labels[1]);

 JLabel boldLabel = new JLabel("Name");
 Font boldFont = boldLabel.getFont();
 Font plainFont = new Font(boldFont.getName(),
 Font.PLAIN, boldFont.getSize());

 for (int i = 2; i < 8; i++) {
 labels[i].setFont(plainFont);
 frame.add(labels[i]);
 }

 frame.pack();
 frame.setVisible(true);
 }

}

To save the world from its procedural fixation, JavaFX offers a declarative
option. Using JavaFX, you can describe a scene as an outline using XML
(eXtensible Markup Language) tags. Here’s a JavaFX version of the grid from
Figure 20-7:

<GridPane gridLinesVisible="true"
 layoutX="100.0" layoutY="165.0">
 <children>
 <Label text="Name"
 GridPane.columnIndex="0" GridPane.rowIndex="0">

 </Label>
 <Label font="$x1" text="Phone"
 GridPane.columnIndex="1" GridPane.rowIndex="0" />
 <Label text="Alice"
 GridPane.columnIndex="0" GridPane.rowIndex="1" />
 <Label text="555-1234"
 GridPane.columnIndex="1" GridPane.rowIndex="1" />
 <Label text="Bob"

408 Part IV: Using Program Units

 GridPane.columnIndex="0" GridPane.rowIndex="2" />
 <Label text="555-4321"
 GridPane.columnIndex="1" GridPane.rowIndex="2" />
 <Label text="Carol"
 GridPane.columnIndex="0" GridPane.rowIndex="3" />
 <Label text="555-3000"
 GridPane.columnIndex="1" GridPane.rowIndex="3" />
 </children>
</GridPane>

If you’re familiar with HTML (the language of web pages) you might recog-
nize some of the tricks in the XML grid code. If not, don’t worry. Using a tool
named Scene Builder, your computer writes the XML code on your behalf. To
see what I mean, keep reading.

Using JavaFX and Scene Builder
GUI programs have two interesting characteristics:

 ✓ GUI programs typically contain lots of code.

 Much of this code differs very little from one GUI program to another.

 ✓ GUI programs involve visual elements.

 The best way to describe visual elements is to “draw” them. Describing
them with code can be slow and unintuitive.

So to make your GUI life easier, you can use JavaFX and Scene Builder. With
Scene Builder, you describe your program visually. Scene Builder automati-
cally turns your visual description into Java source code and XML code.

Installing Scene Builder
Installing Scene Builder is like installing most software. Here’s how you do it:

 1. Visit www.oracle.com/technetwork/java/javase/downloads.

 2. Click the Download button for JavaFX Scene Builder.

 3. Accept the license agreement.

 4. Click the link corresponding to your computer’s operating system
(Windows, Mac, or Linux).

 As a result, the download begins. On a Windows computer, you get an
.exe file or a .msi file. Double-click the file to begin the installation.

http://www.oracle.com/technetwork/java/javase/downloads

409 Chapter 20: Oooey GUI Was a Worm

 On a Mac, you get a .dmg file. Depending on your Mac web browser’s
setting, the browser may or may not expand the .dmg file automatically.
If not, double-click the .dmg file to begin the installation.

 5. Follow the installation routine’s instructions.

 On a Windows computer, you accept a bunch of defaults.

 On a Mac, you drag the Scene Builder’s icon to the Applications folder.

That’s it! You’ve installed Scene Builder.

Installing e(fx)clipse
Eclipse has its own elaborate facility for incorporating new functionality. An
Eclipse tool is called an Eclipse plug-in. When you first install Eclipse, you get
many plug-ins by default. Then, to enhance Eclipse’s power, you can install
many additional plug-ins.

Eclipse’s e(fx)clipse plug-in facilitates the creation of JavaFX applications.
You can add the plug-in to your existing installation of Eclipse, but it’s much
simpler to download a new copy of Eclipse (a copy with e(fx)clipse already
installed). Here’s how you get the new copy of Eclipse:

 1. Visit efxclipse.bestsolution.at.

 2. Look for the page containing All-in One downloads.

 3. On the All-in One downloads page, look for a way to download a copy
of Eclipse for your operating system.

 Your Eclipse download’s word length (32-bit or 64-bit) must match your
Java version’s word length. For the full lowdown on 32-bit and 64-bit
word lengths, see Chapter 2.

 4. Follow the appropriate links or click the appropriate buttons to begin
the download.

 5. Follow the instructions in Chapter 2 to install this new copy of Eclipse
on your computer.

 Place the new copy of Eclipse in a brand-new folder. That way, you don’t
have to uninstall your old copy of Eclipse. (In fact, it’s helpful to have
two separate Eclipse installations on your computer.) On my Windows
computer, I have a c:\eclipse folder and a c:\eclipseFX folder. Both
folders have their own subfolders with names like configuration,
features, and plugins. Both folders have their own eclipse.exe
file. Similarly, my Mac has both eclipse and e(fx)clipse folders
inside the Applications folder.

efxclipse.bestsolution.at

410 Part IV: Using Program Units

 When you open any copy of eclipse, the program prompts you for a place
on your hard drive for the Eclipse workspace (your collection of Eclipse proj-
ects). At this point, you have a choice:

 ✓ You can have two different folders for two different workspaces — one
workspace for your original copy of Eclipse, and a second workspace
for your new copy of Eclipse.

 Doing so keeps your original work (for preceding chapters) separate
from this chapter’s work. Also, with two different workspaces, you can
run both copies of Eclipse simultaneously.

 ✓ Alternatively, you can point both versions of Eclipse to the same
folder (and thus, to the same workspace).

 Doing so keeps all your work in one place. You don’t have to change
workspaces in order to change from your original work to this chapter’s
work. On the minus side, you can’t run two copies of Eclipse using the
same workspace simultaneously.

 Don’t fret over the decision you make about Eclipse workspaces. In any
copy of Eclipse, you can switch from one workspace to another. You can
decide on a particular workspace whenever you launch Eclipse. You
can also move from one workspace to another by selecting File➪Switch
Workspace in Eclipse’s main menu.

 You need at least JDK 7u7 in order to run e(fx)clipse.

Creating a bare-bones JavaFX project
There’s a wise old saying, “A picture is worth 50 words.” And if you count
things like javafx.application.Application as three separate words,
the same picture is worth 70 words. In this section, you create a picture from
which Eclipse builds a 70-word Java program.

 1. Follow the instructions in the previous sections (the “Installing Scene
Builder” and “Installing e(fx)clipse” sections).

 2. Launch your new copy of Eclipse and click the Welcome screen’s
Workbench icon.

 3. From Eclipse’s menu bar, choose File➪New➪Project.

 The New Project dialog box appears.

 4. In the dialog box’s list, expand the JavaFX branch. Within that branch,
select JavaFX project and then click Next.

 A New Java Project dialog box appears.

411 Chapter 20: Oooey GUI Was a Worm

 5. In the New Java Project dialog box, type a name for your project.

 If you’re following my instructions to the letter, name the project
MyFirstJavaFXProject.

 6. In the New Java Project dialog box, select JavaSE-1.7 or JavaSE-1.8.

 You can run JavaFX programs with earlier versions of Java, but life is
easier with Java 7 update 7 (JDK 7u7), or later.

 7. Click Finish to close the New Java Project dialog box.

 After clicking Finish, you may or may not see a dialog box warning you
that Mercurial (whatever that is) is not configured correctly. If you see
this dialog box, look for the box’s Restore Defaults button. Click that
button and then click OK.

 You see the Eclipse workbench with your newly created project in
Eclipse’s Package Explorer.

Running your bare-bones JavaFX project
In the previous section, you use e(fx)clipse to create a brand-new JavaFX
project. When you run the new project’s code, you see the stuff in Figure 20-8.
You see a window with nothing inside it.

Figure 20-8:
An empty
window.

412 Part IV: Using Program Units

The fact that this window contains no images, no buttons, no text fields — no
nothing — comes from the way e(fx)clipse creates your new project. The e(fx)
clipse tool populates the project with a minimum amount of code. That way,
the new project is a blank slate — an empty shell to which you add buttons,
text fields, or other useful components.

Adding Stuff to Your JavaFX Project
I like empty spaces. When I lived on my own right out of college, my apart-
ment had no pictures on the walls. I didn’t want to stare at the same works of
art day after day. I preferred to fill in the plain white spaces with images from
my own imagination. So for me, the empty window in Figure 20-8 is soothing.

But if Figure 20-8 isn’t acquired by New York’s Museum of Modern Art, the
window is quite useless. (By the way, I’m still waiting to hear back from the
museum’s curator.) When you create a high-powered GUI program, you start
by creating a window with buttons and other widgets. Then you add methods
to respond to keystrokes, button clicks, and other such things.

The next section contains some code to respond to a user’s button clicks. But
in this section, you use an XML file to describe a button and a text field:

 1. Follow the instructions in this chapter’s earlier “Creating a bare-bones
JavaFX project” section.

 Look in Eclipse’s Package Explorer for the new project that you create in
that section.

 2. Expand the new project’s branch in Eclipse’s Package Explorer.

 Look for the application branch, which is inside the src branch.

 3. Right-click (or on a Mac, control-click) the application branch. In
the context menu that appears, choose File➪New➪Other.

 The Select A Wizard dialog box appears.

 4. In the Select A Wizard dialog box’s tree, expand the JavaFX branch.

 5. In the JavaFX branch, double-click the New FXML Document item.

 An FXML File dialog box appears, as shown in Figure 20-9.

 6. In the dialog box’s Name field, type a name for your new file and then
click Finish.

 If you’re following my instructions faithfully, name the file Root.

 In Figure 20-9, you type the name Root, but e(fx)clipse creates a file
whose full name is Root.fxml.

413 Chapter 20: Oooey GUI Was a Worm

 This new Root.fxml file describes the layout of the buttons, text fields,
and other things in your new JavaFX application. This is the XML docu-
ment that I make such a fuss about at the start of the “Code Soup: Mixing
XML with Java” section.

Figure 20-9:
The FXML
File dialog

box.

 7. Right-click (or on a Mac, control-click) the new Root.fxml branch in
Eclipse’s Package Explorer. In the context menu that appears, select
Open with SceneBuilder.

 The Scene Builder application window appears (see Figure 20-10).

 The Scene Builder window contains several areas:

	 •	The	middle	of	the	Scene	Builder	window	contains	the	Content
panel, where you see a preview your new app. (Currently, there’s
nothing in your app to see, so the Content panel is a big empty
space.)

	 •	The	upper-left	portion	of	the	window	contains	a	Library panel,
which houses a Containers section, a Controls section, and several
other sections.

 In the GUI world, things like buttons, text fields, labels, and check
boxes are called controls. The Library panel’s Controls section
forms a palette. To create a GUI window, you drag controls from
the palette and drop them onto the Content panel.

414 Part IV: Using Program Units

	 •	The	lower-left	portion	of	the	window	contains	a	Document panel,
which contains a Hierarchy section and a Controller section. The
Hierarchy section contains an AnchorPane item.

 The Hierarchy section contains a tree showing which elements of
your window are inside which other elements. The Controller sec-
tion helps you link the window that you design with the applica-
tion’s Java code.

	 •	The	rightmost	portion	of	the	window	contains	an	Inspector panel,
which contains a Properties section, a Layout section, and a Code
section.

 In the Properties section, you describe the features of the elements
in your window. In the Code section, you name the Java methods
associated with elements in your window.

 Your mileage may vary! These instructions work on a preview release of
Scene Builder 2.0. If you have a different version of Scene Builder, your
steps might be a bit different.

 8. Select the AnchorPane item in the Hierarchy section.

 A marker appears in the middle of the Scene Builder’s Content panel.

 9. Drag the marker in the Content panel to enlarge the AnchorPane (see
Figure 20-11).

Figure 20-10:
Scene

Builder
starts

running.

415 Chapter 20: Oooey GUI Was a Worm

Figure 20-11:
Enlarging

the Anchor-
Pane.

 10. Find the TextField entry in the Controls section of the Library panel;
then drag a TextField control into the AnchorPage in the Content
panel.

 11. Find the Button entry in the Controls section of the Library panel.
Drag a Button control into the AnchorPage in the Content panel. (See
Figure 20-12 for a peek at both the TextField control and the Button
control.)

Figure 20-12:
A TextField

and a
Button.

416 Part IV: Using Program Units

 12. In the main menu, select File➪Save.

 Doing so saves your new FXML file.

 13. Close the Scene Builder application.

 When you return to the Eclipse workbench, you can see the new code in
your Root.fxml file (see Figure 20-13).

 Double-click the Root.fxml branch in the Package Explorer to see the
file’s code. If you don’t see the words TextField and Button in the
code, click your mouse inside the editor window. (Clicking your mouse
updates the editor to reflect the changes made by Scene Builder.) If
the code in the editor doesn’t seem to be indented properly, click your
mouse on a blank area in the editor and press Ctrl-Shift-F.

 Any time you want to format the code in Eclipse’s editor (making the
code easier to read and easier to understand) press Ctrl-Shift-F.

Figure 20-13:
The newly

coded
Root.

fxml file.

 14. Edit the project’s Main.java file.

 Comment out the BorderPane root statement and add a Parent
root statement, as shown in boldface type in Listing 20-3.

 The edits in Listing 20-3 connect the application to your newly designed
Root.fxml layout.

 15. Run the project.

 When you do, you see the window in Figure 20-14.

Figure 20-14:
A run of

your project
using the
Root.

fxml file.

417 Chapter 20: Oooey GUI Was a Worm

Listing 20-3: How to Edit the Main.java File

package application;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class Main extends Application {
 @Override
 public void start(Stage primaryStage) {
 try {
 // BorderPane root = new BorderPane();
 Parent root = FXMLLoader.load(getClass().
 getResource("Root.fxml"));
 Scene scene = new Scene(root, 400, 400);
 scene.getStylesheets().
 add(getClass().getResource("application.css").
 toExternalForm());
 primaryStage.setScene(scene);
 primaryStage.show();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 launch(args);
 }
}

As you follow this section’s steps, Scene Builder modifies your project’s
Java code. Having followed this section’s steps, you can run the project in
the usual way (by choosing Run➪Run As➪Java Application). But when the
project runs, the application doesn’t do anything. When you click the button,
nothing happens. When you type in the text field, nothing happens. What a
waste!

In the next section, you get the button and the text field to do something.

Taking Action
The program that you create in this chapter is approximately 50 lines long.
But up to this point in the chapter, you type only one line of code. In this sec-
tion’s instructions, you make a button respond to a mouse click. You do this
by typing only a few more lines of code!

418 Part IV: Using Program Units

 1. Follow the instructions in this chapter’s earlier “Adding Stuff to Your
JavaFX Project” section.

 As a result, you have code that displays a TextField control and a Button
control. It’s time to reopen Scene Builder.

 2. Right-click (or on a Mac, control-click) the Root.fxml branch in Eclipse’s
Package Explorer. In the resulting context menu, select Open with
SceneBuilder.

 The Scene Builder application window appears (refer to Figure 20-12).

 3. In the Scene Builder window, select your app’s Button control.

 You can do this by clicking the Button control’s picture in the Content
panel or by clicking the word Button in the Hierarchy section of the
Document panel.

 When you select the Button control, the Properties section of the
Inspector panel displays some information about your Button control.
Near the top of the section, you see an item labeled Text. Whatever you
type in the field next to the word Text is displayed on the face of the
button.

 4. In the field next to the word Text, type the word Capitalize, and then
press Enter.

 When you do this, the word Capitalize appears on the face of the Button
control in the Content panel (see Figure 20-15).

 Remember that the Inspector panel contains three sections — the Prop-
erties section, the Layout section, and the Code section. At this point,
the Properties section is expanded, and the other two sections are
collapsed.

Figure 20-15:
Working
with the

Button
control’s

properties.

419 Chapter 20: Oooey GUI Was a Worm

 5. In the Inspector panel, click on the Code section.

 Doing so expands the Code section (at the expense of the Properties
section).

 6. In the Code section, look for a field that’s labeled On Action. In that
field, type onClick and then press Enter (see Figure 20-16).

 Before typing the word onClick, make sure you see the word Button at
the top of the Code section. If you see another word (such as TextField
or AnchorPane), you’re about to change the wrong component’s On
Action field.

 So much for your Button control! Now, you work with your TextField
control.

Figure 20-16:
When a

user clicks
your Button
control, call

the code’s
onClick

method.

 7. Select your TextField control (either in the Content panel or in the
Hierarchy section of the Document panel).

 8. In the Code section, look for a field that’s labeled fx:id. In that field,
type textField and then press Enter (see Figure 20-17).

 Before bidding a fond farewell to Scene Builder, you link the Scene
Builder’s work to the Java code:

Figure 20-17:
Assigning

an id to your
TextField

control.

420 Part IV: Using Program Units

 9. Click on the Controller section in the Document panel.

 Doing so expands the Controller section at the expense of the Hierarchy
section.

 10. In the Controller Class field (inside the Controller section) type appli-
cation.Main (with a dot between the two words) and then press Enter
(see Figure 20-18).

 You have leeway in carrying out some of the other steps in this section.
For example, if you type Click Me! instead of Capitalize in Step 4, the pro-
gram still runs. But you have very little leeway when you fill in this step’s
Controller Class field. By default, the e(fx)clipse tool names your program
Main.java, and puts your program in a package named application.
So in the Controller Class field, you have to point to this application.
Main program. If you point somewhere else, you have to rename the pro-
gram or the package or both. And with more than 40 steps to follow in this
chapter so far, you probably don’t want to rename things unnecessarily.

 At last! Your work with Scene Builder is coming to a close!

Figure 20-18:
Specifying
the FXML
file’s con-

troller class.

 11. In the Scene Builder’s main menu, select File➪Save.

 12. Close the Scene Builder application.

 Whew! You’re back to the Eclipse workbench.

 Eclipse might not update the Root.fxml file’s contents automatically
when you close Scene Builder. If you don’t see the word Capitalize
in the code, click your mouse inside the editor window. (Clicking your
mouse updates the editor to reflect the changes made by Scene Builder.)

 13. In the Main.java file, add the boldface code near the start of
Listing 20-4 and near the end of Listing 20-4.

 The edits in Listing 20-4 tell Java to change the text that appears in your
TextField control when the user clicks your Button control.

 And with that step, you have a real GUI application!

 14. Run the project.

421 Chapter 20: Oooey GUI Was a Worm

Listing 20-4: How to Edit the Main.java File

package application;

import javafx.event.ActionEvent;
import javafx.scene.control.TextField;
import javafx.application.Application;
import javafx.fxml.FXML;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class Main extends Application {
 @Override
 public void start(Stage primaryStage) {
 try {
 // BorderPane root = new BorderPane();
 Parent root = FXMLLoader.load(getClass().
 getResource("Root.fxml"));
 Scene scene = new Scene(root, 400, 400);
 scene.getStylesheets().
 add(getClass().getResource("application.css").
 toExternalForm());
 primaryStage.setScene(scene);
 primaryStage.show();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static void main(String[] args) {
 launch(args);
 }

 @FXML
 private TextField textField;

 @FXML
 protected void onClick(ActionEvent event) {
 textField.setText(textField.getText().toUpperCase());
 }
}

When you run this section’s program, you see something like the screen
shots in Figures 20-19, 20-20, and 20-21. Et voilà! When you click the button,
Java capitalizes your text!

422 Part IV: Using Program Units

Figure 20-19:
A brand-

new frame.

Figure 20-20:
The user

types in the
text box.

Figure 20-21:
Clicking the
button capi-

talizes the
text in the

text box.

Part V
The Part of Tens

 Enjoy an additional Beginning Programming with Java Part of Tens chapter online at
www.dummies.com/extras/beginningprogrammingwithjava.

http://www.dummies.com/extras/beginningprogrammingwithjava

In this part . . .
 ✓ Using resources on the web

 ✓ Seeing the tip of the iceberg: A few of Java’s most useful
classes

Chapter 21

Ten Websites for Java
In This Chapter
▶ Checking out this book’s website

▶ Finding resources from Oracle

▶ Reading more about Java

N
o wonder the web is so popular. It’s both useful and fun. This chapter
proves that fact by listing ten useful and fun websites. Each website

has resources to help you use Java more effectively. And as far as I know,
none of these sites use adware, pop-ups, or other grotesque things.

This Book’s Website
For all matters related to the technical content of this book, visit www.all
mycode.com/BeginProg.

For business issues (for example, “How can I purchase 100 more copies of
Beginning Programming with Java For Dummies?”), visit www.dummies.com/
go/beginningprogrammingwithjavafd4e.

The Horse’s Mouth
The official Oracle website for Java is www.oracle.com/technetwork/java.

Consumers of Java technology should visit www.java.com.

Programmers and developers interested in sharing Java technology can go to
www.java.net.

http://www.allmycode.com/BeginProg
http://www.allmycode.com/BeginProg
http://www.dummies.com/go/beginningprogrammingwithjavafd4e
http://www.dummies.com/go/beginningprogrammingwithjavafd4e
http://www.oracle.com/technetwork/java
http://www.java.com
http://www.java.net

426 Part V: The Part of Tens

Finding News, Reviews,
and Sample Code

For articles by the experts, visit InfoQ at www.infoq.com.

For discussion by everyone (including many very smart people), visit Java
Ranch at www.javaranch.com.

Looking for Java Jobs
For job listings, visit www.computerwork.com.

Everyone’s Favorite Sites
It’s true — these two sites aren’t devoted exclusively to Java. However, no geek-
worthy list of resources would be complete without Slashdot and SourceForge.

 ✓ The Slashdot slogan is “News for nerds, stuff that matters,” which says it
all. By all means, visit http://slashdot.org.

 ✓ The SourceForge repository (at http://sourceforge.net) houses
more than 200,000 free, open-source projects. Check it out!

http://www.infoq.com
http://www.javaranch.com
http://www.computerwork.com
http://slashdot.org
http://sourceforge.net

Chapter 22

Ten Useful Classes in the Java API
In This Chapter
▶ Finding out more about classes

▶ Discovering other helpful classes

I
’m proud of myself. I’ve written around 400 pages about Java using fewer
than 30 classes from the Java API. The standard API has about 4,000 classes,

so I think I’m doing very well.

Anyway, to help acquaint you with some of my favorite Java API classes, this
chapter contains a brief list. Some of the classes in this list appear in exam-
ples throughout this book. Others are so darn useful that I can’t finish the
book without including them.

For more information on the classes in this chapter, check Java’s online API
documentation at http://docs.oracle.com/javase/8/docs/api.

Applet
What Java book is complete without some mention of applets? An applet is a
piece of code that runs inside a web browser window. For example, a small
currency calculator running in a little rectangle on your web page can be a
piece of code written in Java.

At one time, Java applets were really hot stuff, but nowadays, people are
much more interested in using Java for business processing. Anyway, if
applets are your thing, don’t be shy. Check the Applet page of Java’s API
documentation.

http://docs.oracle.com/javase/8/docs/api

428 Part V: The Part of Tens

ArrayList
Chapter 16 introduces arrays. This is good stuff, but in any programming
language, arrays have their limitations. For example, take an array of size 100.
If you suddenly need to store a 101st value, you’re plain out of luck. You can’t
change an array’s size without rewriting some code. Inserting a value into an
array is another problem. To squeeze "Tim" alphabetically between "Thom"
and "Tom", you may have to make room by moving thousands of "Tyler",
"Uriah", and "Victor" names.

But Java has an ArrayList class. An ArrayList is like an array, except
that ArrayList objects grow and shrink as needed. You can also insert new
values without pain using the ArrayList class’s add method. ArrayList
objects are very useful because they do all kinds of nice things that arrays
can’t do.

File
Talk about your useful Java classes! The File class does a bunch of things
that aren’t included in this book’s examples. Method canRead tells you
whether you can read from a file or not. Method canWrite tells you if you
can write to a file. Calling method setReadOnly ensures that you can’t acci-
dentally write to a file. Method deleteOnExit erases a file, but not until
your program stops running. Method exists checks to see whether you
have a particular file. Methods isHidden, lastModified, and length give
you even more information about a file. You can even create a new directory
by calling the mkdir method. Face it, this File class is powerful stuff!

Integer
Chapter 18 describes the Integer class and its parseInt method. The
Integer class has lots of other features that come in handy when you work
with int values. For example, Integer.MAX_VALUE stands for the number
2147483647. That’s the largest value that an int variable can store. (Refer
to Chapter 7.) The expression Integer.MIN_VALUE stands for the number
–2147483648 (the smallest value that an int variable can store). A call to
Integer.toBinaryString takes an int and returns its base-2 (binary)
representation. And what Integer.toBinaryString does for base 2,
Integer.toHexString does for base 16 (hexadecimal).

429 Chapter 22: Ten Useful Classes in the Java API

Math
Do you have any numbers to crunch? Do you use your computer to do exotic
calculations? If so, try Java’s Math class. (It’s a piece of code, not a place to
sit down and listen to lectures about algebra.) The Math class deals with π, e,
logarithms, trig functions, square roots, and all those other mathematical
things that give most people the creeps.

NumberFormat
Chapter 18 has a section about the NumberFormat.getCurrencyInstance
method. With this method, you can turn 20.338500000000003 into $20.34. If
the United States isn’t your home, or if your company sells products worldwide,
you can enhance your currency instance with a Java Locale. For example, with
euro = NumberFormat.getCurrencyInstance(Locale.FRANCE), a call
to euro.format(3) returns 3,00 € instead of $3.00.

The NumberFormat class also has methods for displaying things that aren’t
currency amounts. For example, you can display a number with or without
commas, with or without leading zeros, and with as many digits beyond the
decimal point as you care to include.

Scanner
Java’s Scanner class can do more than what it does in this book’s examples.
Like the NumberFormat class, the Scanner can handle numbers from various
locales. For example, to input 3,5 and have it mean “three and half,” you can
type myScanner.useLocale(Locale.FRANCE). You can also tell a Scanner
to skip certain input strings or use numeric bases other than 10. All in all, the
Scanner class is very versatile.

String
Chapter 18 examines Java’s String class. The chapter describes (in gory
detail) a method named equals. The String class has many other useful
methods. For example, with the length method, you find the number of

430 Part V: The Part of Tens

characters in a string. With replaceAll, you can easily change the phrase
"my fault" to "your fault" wherever "my fault" appears inside a
string. And with compareTo, you can sort strings alphabetically.

StringTokenizer
I often need to chop strings into pieces. For example, I have a fullName vari-
able that stores my narcissistic "Barry A. Burd" string. From this fullName
value, I need to create firstName, middleInitial, and lastName values.
I have one big string ("Barry A. Burd"), and I need three little strings —
"Barry", "A.", and "Burd".

Fortunately, the StringTokenizer class does this kind of grunt work. Using
this class, you can separate "Barry A. Burd" or "Barry,A.,Burd" or
even "Barry<tab>A.<tab>Burd" into pieces. You can also treat each sepa-
rator as valuable data, or you can ignore each separator as though it were
trash. To do lots of interesting processing using strings, check out Java’s
StringTokenizer class.

System
You’re probably familiar with System.in and System.out. But what about
System.getProperty? The getProperty method reveals all kinds of infor-
mation about your computer. Some of the information you can find includes
your operating system’s name, your processor’s architecture, your Java Virtual
Machine version, your classpath, your username, and whether your system
uses a backslash or a forward slash to separate folder names from one another.
Sure, you may already know all this stuff. But does your Java code need to
discover it on the fly?

Index
• Symbols and Numerics •
+ (plus sign)

for addition, 139, 378
concatenating strings with, 378

++ (preincrement operator), 144–145
() (parentheses)

calling a method, 377
calling an object’s method, 377
casting, 144
conditions using, 205–206
in if statements, 181
methods and, 161

. (dot)
calling an object’s methods, 357
to refer to an object’s parts, 341
in regular expressions, 161

; (semicolon)
after for statements, 289
ending statements with, 93
in if statements, 181, 182

&& (ampersands), 194
* (asterisk), for multiplication, 139
{} (curly braces)

acting like a box, 86
in blocks, 191, 237
cascading if statements and, 212
in classes, 95
missing, in if statements, 182
statements in, 235, 237, 238
too many, 114–115
use of, 85–86

“” (curly quotation marks), 64
== (is equal to), 166
< (is less than), 166
<= (is less than or equal to), 166
> (is greater than), 166
>= (is greater than or equal to), 166
!= (is not equal to), 166
- (minus sign), 139

% (percent sign), as remainder
operator, 140

[] (square brackets), 85
“” (straight quotation marks), quotation

marks, 64
_ (underscore character)

in class names, 62
numbers with, as literals, 85

? : (question mark colon) conditional
operator, 230

&& operator (and), 194
! operator (not, negative, or no way),

194, 195
|| operator (or), as inclusive, 194, 195
@ sign, trying to get a username from

an e-mail address and, 246–250, 276,
279–283

• A •
abbreviations, in import

declarations, 192
abstract method, 113
abstract modifier, 113
Abstract Window Toolkit (AWT),

394, 395
Account class, 373–376
actions, Eclipse, 69
active editor, 72
active view, 72
Add Body quick fix, 113
addinterest method, 383–386
addition, plus sign for, 139
All-in One downloads, 409
allographs, 173
amount variable, 122–123

double keyword, 127
first value of, 131
initializing, 131

anAccount.display method, 377

432 Beginning Programming with Java For Dummies, 4th Edition

assumptions of this book, 3–4
asterisk (*), for multiplication, 139
author of this book

Eclipse IDE disclaimers, 69
e-mail address, 7
Facebook page, 7, 23
Twitter handle, 7
Twitter page, 23

AWT (Abstract Window Toolkit),
394, 395

• B •
Backgammon game, 193–194
backslash, double (\\) (\\), inside

quotation marks, 270
Beckstrom, Bob, 370
BeginProgJavaDummies4.zip file, 26
BetterAccount object, 381
BigDecimal type, 143, 380
BigInteger, 143
bigLetter variable, 155–158
binary, 428
32-bit operating system, 31
64-bit operating system, 31
32-bit software, 24, 28, 30–32
64-bit software, 24, 28, 30–32
bits

32-bit versus 64-bit operating systems
and software, 24, 28. 30–32

defined, 30
blank line, 142
blank spaces, extra (unwanted), 250–251
blocks

of if statements, 191
of statements, 237

body, display method’s, 90, 374–375
boolean variables (boolean type)

defined, 164
examples of using, 164–165, 201–203
overview, 164–165

BorderPane root statement, 416
braces, curly ()

acting like a box, 86
in blocks, 191, 237

anAccount.lastName method, 377, 380
AnchorPane item, Scene Builder,

414, 419
and (&&), 194
Android software, in general, 29
androidBook.jpg icon, 397, 399, 405
AnswerYesOrNo program, 183–185
API Documentation (API Specification)

Applet page, 427
basic description of, 20–21
downloading, 21, 30
in Java programming toolset, 21

applets, 427
Application Programming Interface

(API). See also API Documentation
defined, 14
overview, 20

Applications folder, 24, 41, 409
approval.txt file, 269, 272
area, workbench, 69, 70
args

explained, 83
misspelling, 116

array elements (components), 320–322
ArrayList class, 428–429
arrays

ArrayList class, 428–429
background and overview, 317–320
components, 320–322
creating a report, 322–324
declaring an array with ten values, 321
defined, 320
entering new data, 324–327
storing values in, 321

assigning values to variables, 131,
165, 380

assignment operators, 147–150
assignment statements

initialization and, 198
order of, 138
overview, 129–130
reading from right to left, 124
understanding, 124

assignments, difference between
initializations and, 131–132

433433 Index

char type
defined, 154
listing using, 154
as numeric type, 173

char variable, only one character stored
by, 157

characters
alphabetical ordering of, 172
comparing, 172–173
comparison operators, 166
defined, 154
reading, 162–163

Character.toUpperCase method,
154–156, 158

charAt method, 162–163
cheat sheet, 6
Check class, 357, 358, 368, 369
chevron (double arrow), Eclipse IDE, 73
Chrome browser, 32
.class files, defined, 14
class keyword, 81
classes

combining and using data, 357
concept of, 344
converting your code to use, 336
creating, 334–335
curly braces () in, 95
defining methods within, 371
differences between objects and, 338
extending, 403–405
for GUI applications, 394

Abstract Window Toolkit (AWT), 394
Eclipse’s Standard Widget Toolkit

(SWT), 395
JavaFX classes, 395, 407–413, 418
Swing classes, 394–395, 403

inheriting methods, 405
JavaFX, 395, 407–413, 418
JFrame

creating an instance of, 400–401
described, 398–400
extending, 403–405

objects from, 338–340
questions and answers about, 345
reference types and, 335

cascading if statements and, 212
in classes, 95
missing, in if statements, 182
statements in, 235, 237, 238
too many, 114–115
use of, 85–86

brackets, square ([]), 85, 320
break statements

defined, 220
fall-through and, 224–229

breakpoint, 170
Breakpoints view, Eclipse IDE, 170
button control, 412–422
byte type, 151, 152
bytecode

defined, 14, 16
in general, 17–19
Java Virtual Machine and, 18

• C •
C++

Eclipse tool for programming in, 39
in general, 95

.cab files, 26
calling

an object’s methods, 357
a method, 89–92, 375–376
static and non-static methods, 358–359

canRead method, 428
canWrite method, 428
capitalization

errors, 116–118
toUpperCase method, 154–156

Card Total, 240–242, 244
cascading if statements, 209–212
case clauses, switch statements,

219–220
case sensitivity

defined, 64
errors in, 108–110
of Java language, 81

casting, 144
Celsius, program for converting to

Fahrenheit temperature, 166–169

434 Beginning Programming with Java For Dummies, 4th Edition

sample, 11–12
translating into zeros and ones,

14–17, 126
code template, 258, 259
combining and using data, 338, 357, 371
commands, need to issue, 21
commas, adding extra, 111
commenting out, 87
comments

described, 87–88
end-of-line, 87
Javadoc, 88
traditional, 87
turning statements into, 87

comparing
characters, 172–173
numbers, 165–172
strings, 354–355

comparison operators, 166
compilation, defined, 14, 16
compiler, Java

defined, 14, 15
Eclipse IDE, 29

Compiler Compliance Level drop-down
list, 47

compile-time errors (compiler errors)
defined, 65
Eclipse’s editor and, 67, 110

compile-time warnings, 68
compiling, source code to create object

code, 15
compliance level, compiler, 47
components (array elements), 320–322
compound statements, 181, 182, 237
compressed archives, 26
computers. See also Macs

limitations of, 98
role-playing, 279, 283

concatenating strings, with plus
signs, 378

Condition place-holder, 180
conditional operators, 229–231
conditions, 193–201. See also if

statements

Scanner
described, 106
findWithinHorizon method, 105
fully qualified name of, 106, 365
java.util package, 365
nextDouble method, 105, 130
nextLine method, 105
NumberFormat class and, 429

String
example, 348
overview, 347–348, 429

Swing, 394, 395, 403
terminology, 340–341
with two methods, 380–381
useful, 427–430
usefulness of, 344

clauses
case, 219–220
default, 220–221, 224
if, 181, 182, 190, 191

close button, Eclipse IDE, 73
close method, 261
COBOL, sample code, 13
code (programs). See also Java

programs; listings
to Display the Things I Like, 63
importing this book’s, 48–50
object

defined, 14
in general, 17
relationship between source code

and, 15
overview, 11–13
process of creating, 14
reusing, 20
running

on almost any computer, 3
Canned Java Program, 53–58
overview, 15–19
projects that contain two Java source

files, 337
separating your programs from this

book’s, 59

classes (continued)

435435 Index

currency object, format method of, 363
currency variable, in NumberFormat

class, 363

• D •
data types. See types
days in a month, finding the number of,

227–231
Debug As menu item, 170
Debug perspective, Eclipse IDE,

170–172
debugging. See also troubleshooting

automated, 170–172
code in Listing 18-3, 353–354

decimal numbers
comparing, 166–167
defined, 127–128
division and, 139–140
reading from the keyboard, 128–129
types of, 151–152

decisions. See also if statements
overview, 179

declarations
dragging outside of a method, 131–133
import, 106, 129, 192
method, 89–91, 131
variable

combining, 133–134
defined, 127

decrement operators, 144, 148
default clauses, switch statements,

220–221, 224
default package, Java’s, 61, 62
deleteOnExit method, 428
deleting files

response from the user and, 295–298
several files, 329–331
.txt files, 329–331

diagnosing a problem, 108–111
case sensitivity, 108–110
EchoLine program, 108
omitting punctuation, 110–111
too much punctuation, 111–112

combined, 194–197
defined, 165
in for loops, 315–317
mixing different logical operators,

203–205
multipart, 201
parentheses, 205–206
while loops and, 294–295

Console view, Eclipse IDE
disk files and, 256
displaying text in, 254
NumberFormatException

message in, 58
overview, 74
println method and, 84

const keyword, 82
constructor calls, 400–403
constructors, defined, 402
Content panel, Scene Builder

window, 413
Controller Class field, 420
Controller section, Scene Builder, 414
controls, Scene Builder, 413
converting

Celsius to Fahrenheit temperature,
166–169

converting your code to use
classes, 336

numbers into strings, 361–363
statements into comments, 87
strings into numbers, 359–361

count variable, 287, 290, 291
counting loops, 286–288
curly braces ()

acting like a box, 86
in blocks, 191, 237
cascading if statements and, 212
in classes, 95
missing, in if statements, 182
statements in, 235, 237, 238
too many, 114–115
use of, 85–86

currency, formatting numbers as,
363–365

436 Beginning Programming with Java For Dummies, 4th Edition

double arrow (chevron), Eclipse IDE, 73
double backslash (\\), inside quotation

marks, 270
double equal sign (==), comparisons

with, 166, 188, 354, 355
double keyword, 127
double quote marks, for literals, 351
double type

inaccuracies, 169
overview, 127, 143
use in this book, 380

double values
avoiding using for money, 143
casting, 144
dividing, 140

double variables, combined declarations
and, 142

downloading
API Documentation (API Specification),

21, 30
Eclipse IDE for Java Developers, 24,

39–40
programming tools, 22, 26
sample programs, 24

DriverManager.println method, 93

• E •
eachKidGetsTen variable, 164, 165, 195
EchoLine program

code listing, 98–100
extra lines of code, 105–107

errors
case sensitivity, 108–110
diagnosing a problem, 108–111
expecting, 107–108
omitting punctuation, 110
runtime error messages, 117–118
spelling errors, 115–117
why computers can’t fix, 111–115

getting keyboard input, 104–105
how the program works, 103–104
Scanner class, 106
testing the code, 100–103
typing and running, 100–103

dice game, 234–238
directory, current working, 329
disk access facilities, Java’s, 260–261
disk files

reading from, 315
troubleshooting problems with, 264–266

disk-oriented programs
creating an input file, 261–262
Java’s disk access facilities, 260–261
keyboard-reading program and, 254
overview, 253
reading from disk files, 268
reading input from a disk, 258–259
running, 254–256
sample program

listing, 256–257
running, 261–263
viewing the output file, 263

troubleshooting problems with disk
files, 264–266

writing a disk-oriented program,
266–267

writing to a file, 268–271
diskScanner method, 258, 260, 277,

315–317
diskWriter.print method, 259–261
display method, 372–377
DISPOSE_ON_CLOSE parameter, 399
division

of an int value by another int value, 139
finding remainders, 140–144
forward slash for, 139

do loops (do . . . while loops)
execution of statements inside the

loop, 300
format of, 299

do statements, 294, 299
“do this, then do that” approach, 406
Document panel, Scene Builder, 414
DO_NOTHING_ON_CLOSE

parameter, 399
dots (.)

calling an object’s methods, 357
to refer to an object’s parts, 341
in regular expressions, 161

437437 Index

Package Explorer. See Package
Explorer, Eclipse

perspective, 74, 170
plug-ins, 409
Preferences dialog, 44, 46, 47, 259
running for the first time, 42–43
separate installations of, 409
setting up, 38–39
Show View dialog box, 54, 74
Standard Widget Toolkit (SWT), 395
switching to a different workspace, 59
toolbar, 72
Variables view, 170
Welcome screen, 25, 42, 43, 56
workbench

Console view. See Console view
display of this book’s Java projects, 50
launching Eclipse and, 25
overview, 69
running Eclipse for the first time,

42, 43
Workspace Launcher dialog, 42, 54,

55, 59
yellow markers in, 68, 403

Eclipse IDE for Java Developers,
downloading, 24

e(fx)clipse plug-in, 409–412, 420
Eclipse website

advice to check often, 23
downloading Eclipse from, 39–40

editor, Eclipse
active, 72
changes or corrections to the

code in, 66
compile-time warnings, 68
errors and, 107–108
formatting in, 64
need for, 21
overview, 71–72
quick fixes, 65, 109, 112, 113, 403
red marks in, 65
syntax highlighting in, 21, 64

editor area, Eclipse IDE, 74
electronic version of this book, 102

EchoLine.java editor, 101
Eclipse editor

logic errors, 67–68
unchecked runtime exceptions, 67

Eclipse folder, extracting the contents of
downloaded, 24

Eclipse IDE
32-bit and 64-bit versions of, 32, 40
advantages of, 22
author’s disclaimers, 69
Breakpoints view, 170
chevron (double arrow), 73
close button, 73
compile-time errors in, 65
configuring Java in, 44–50
Console view

disk files and, 256
displaying text in, 254
NumberFormatException

message in, 58
overview, 74
println method and, 84

creating a new Java project, 60–62
Debug perspective, 170–172
definitions of terms, 69
deleting files, 297–298
displaying text in Console view, 254
downloading, 39–40
e(fx)clipse plug-in, 409–412, 420
editor. See editor, Eclipse
editor area, 74
error markers in, 65
importing BeginProgJavaDummies4.zip

file into, 26
importing this book’s sample programs,

48–50
indenting automatically, 86
installing, 40–41
JRE vs. JDK choice and, 29
launching, 25
layout, 74, 170
marker bar, 73
menu button, 72–73
New File dialog box, 262, 297

438 Beginning Programming with Java For Dummies, 4th Edition

unchecked runtime exceptions, 67
why computers can’t fix, 111–115

escape sequence, 245
examples, program, downloading, 24
exclamation point (not, negative, or no

way), 194, 195
exists method, 428
EXIT_ON_CLOSE parameter, 398, 399
expressions

conditions and, 165
defined, 148
regular, 161
statements and, 148

extends JFrame, 403–405
extensions, filename, 25

• F •
Facebook, author’s page on, 7, 23
Fahrenheit temperature, program for

converting from Celsius to, 166–169
fall-through, default clauses and, 224–229
false (reserved word), 82
February, 228–230
File(“rawData.txt”), 260, 264
File class, uses of, 428
filename extensions, 25, 268
filenames, troubleshooting problems

with disk files, 264
FileNotFoundException, 260
files

deleting
response from the user and, 295–298
several files, 329–331
.txt files, 329–331

end of
checking for, 277–279
why the computer accidentally

pushes past, 280–281
input and output, 257
listFiles method, 330
troubleshooting problems with,

264–266
findWithinHorizon method, 105, 161–163,

222, 250, 268, 277, 281
Firefox, 32

else clause, 181, 182, 187, 188, 190, 191,
209

e-mail address
author’s, 7
trying to get a username from an,

246–250, 274–275
empty string, 378
end of a file

checking for, 277–279
why the computer accidentally

pushes past, 280–281
ending statements, with a

semicolon, 93
end-of-line comments, 87
enhanced for loops

with arrays, 327–329
creating, 301–303
defined, 301
format of, 301–302
nesting, 303–307

Enterprise Edition, Java, 29
enum type

creating, 212–213
listing using, 213–215
for slot machine symbols, 301–303

equal signs
accidentally typing two, 116
double (==), comparisons with, 166,

188, 354, 355
equal to (==) operator, 166
equals method, 355–357, 359, 371,

429
error markers, 65
errors (error messages)

compiler (compile-time), 65
EchoLine program

case sensitivity, 108–110
diagnosing a problem, 108–111
expecting, 107–108
omitting punctuation, 110
runtime error messages, 117–118
spelling errors, 115–117
why computers can’t fix, 111–115

expecting, 107–108
if statement, 181–182
logic, 67–68

439439 Index

GetUserName program, 251
Giroux, Phillip, 370
glyphs, 173
goto keyword, 82
goToTheSupermarketAndBuySome

method, 382, 383, 387
greater than (>) operator, 166
greater than or equal to (>=)

operator, 166
GridLayout, 406
grouping separators, 129, 168, 257
guestsIn array, 321, 322,

325, 328
GUI (Graphical User Interface)

button control and other widgets,
412–422

displaying a window on the screen,
395–398

frames
creating an instance of,

400–401
described, 398–400
extending, 403–405

in general, 78
Java classes for creating GUI

applications, 394–395
JavaFX classes, 395, 407–413, 418
JFrame class

creating an instance of, 400–401
described, 398–400
extending, 403–405

mixing XML with Java, 406–408
overview, 393
Scene Builder, 408–409, 413, 414,

416–420
Swing classes, 394–395, 403
windows

declaratively describing,
406–407

displaying on computer screen,
395–398

Eclipse, 69
jumping among, 21

gumball problem, 135–138

FixTheAlternator method, 88–92
float type, 152, 169
flow of control, 376–377
folder names, 270
fonts used in this book, 2
for loops

arrays and, 322–324
conditions in, 315–317
deciding on limits at runtime, 313–315
enhanced

with arrays, 327–329
creating, 301–303
defined, 301
format of, 301–302
nesting, 303–307

initializing, 289–291
while loops and, 291

for statements, 286–288. See also for
loops

example listing, 286–288
structure of, 288–289

formatting, in Java programs, 64
forward slash, for division, 139
four-letter word, reversing the letters

in a, 159–160, 233
frame.pack method, 398, 399
frames

JFrame class
creating an instance of, 400–401
described, 398–400
extending, 403–405

JLabel class, 397
shrink-wrapping, 399, 405

frame.setDefaultCloseOperation method,
398, 399

fullName variable, 350
fully qualified name, Scanner class, 106,

365
FXML File, 412–413, 416, 420

• G •
getCurrencyInstance method, 362, 429
getInterest method, 386, 390, 391
getProperty method, 430

440 Beginning Programming with Java For Dummies, 4th Edition

import declarations, 106, 129, 192,
365–366

Import Projects dialog, Eclipse, 48–50
indented code, 86
indenting

alternative to, 119
automatically, 86
if statements, 185–187
punctuation and, 86

indexes, of arrays, 320
infinite loops, 243
InfoQ, 426
inheritance, 405
initializing

for loops, 289–291
variable values, 131–132, 134, 198

inner loops, 277, 279–281
input file, creating an, 261–262
Inspector panel, Scene Builder, 414
installation, online versus offline, 29
Installed JREs, in Eclipse’s Preferences

dialog, 44–45
installer, Java, 24
instances

objects and, 340, 341
questions and answers about, 345

int type
for money values, 380
for whole numbers, 151, 152

int values
assigning to a double variable, 380
dividing by another int value, 139
reading, 138
as whole numbers, 136

int variable, 142, 144, 302, 343, 380, 384, 428
Integer class, 359, 361, 428
Integer.MAX_VALUE, 428
Integer.MIN_VALUE, 428
Integer.toBinaryString, 428
Integer.toHexString, 428
integrated development environment

(IDE). See also Eclipse IDE
basic description of, 22

interest
adding, 382–383
addinterest method, 383–386

• H •
hard drive, data in. See disk-oriented

programs
Haskell language, 13
hasNext method, 277, 316, 317
headers, method

definition of, 90
examining, 373
example of, 93
working with, 385–386, 391

Herst, David, 120
hexadecimal, 428
HIDE_ON_CLOSE parameter, 399
Hierarchy section, Scene Builder, 414,

418, 420
highlighting, syntax, 21, 64
host name, 274, 280
hovering the mouse, over error

markers, 110
HTML, 408

• I •
icons used in this book, 5–6
IDE (integrated development

environment). See also Eclipse IDE
basic description of, 22

identifiers
with agreed-upon meanings, 83–84
defined, 83
user defined, 83, 119

if clauses, 181, 182, 190, 191
if statements

blocks, 191
cascading, 209–212
complete program with, 183–185
error messages, 181–182
format of, 179–180
indenting, 185–187
introduction to, 179
nesting, 206–209
sample programs, 179, 183, 188–190
without an else clause, 187

IHateTxtFiles.java file, 329, 330
ImageIcon class, 397

441441 Index

Java Motel, occupancy report for,
311–317

Java perspective, Eclipse’s, 74, 170
Java Preferences on Macs, 35, 36
Java programs. See also code; listings

checking out Java code for the first
time, 77–79

different approaches to, 119–120
elements of

comments, 87–88
identifiers, 83–84
keywords, 81–82
literals, 84–85
overview, 80
punctuation, 85–87

getting this book’s sample programs, 26
out variable, 366, 367
sample program, 78–79
syntax highlighting in, 64
tools for writing, 21–22
tools needed for writing, 23–25
understanding a simple program, 88–91
writing a disk-oriented program,

266–267
Java Runtime Environment (JRE)

choice between JDK and, 28–29
configuring Java in Eclipse and, 44–45
in general, 27
Settings, 37–38

Java SDK. See JDK (Java
Development Kit)

Java SE (Java Standard Edition)
download page, 28
versus Java EE versus Java ME, 29
versions of, 28

Java Software Development Kit (Java
SDK). See JDK (Java
Development Kit)

Java Virtual Machine (JVM)
boolean values in, 165
described, 18–19
“Main method not found” message, 118
portability of, 19
random numbers, 186
Write Once, Run Anywhere model of, 19

interestRate parameter, 383–386
isHidden method, 428
iterations of loops, 235, 236

• J •
Java (Java ecosystem). See also Java

language
classes for creating GUI applications,

394–395
complexity of, 366
finding on your computer, 32–38
numbering of versions of, 28
version numbers, 28, 32, 34
versions of, 34–38

Java API
documentation (API Documentation)

Applet page, 427
basic description of, 20–21
downloading, 21, 30
in Java programming toolset, 21

introduction to, 20–21
Java class

New Java Class dialog box, 61, 62, 101
overview, 95

Java compiler
defined, 14, 15
Eclipse IDE, 29

Java Control Panel, on Macs, 35–37
Java Development Kit (JDK)

choice between JRE and, 28–29
downloading latest version of, 24
online versus offline installation, 29

Java EE (Java Enterprise Edition), 29
Java installer, 24
Java JDK, getting newest version of, 27
Java language. See also Java

as case-sensitive, 81
comparisons between English and, 80
keywords in, 80–83, 118
origin of, 20

Java library, 20. See also Application
Programming Interface (API)

Java ME (Java Micro Edition), 29
Java methods. See also methods

overview, 89

442 Beginning Programming with Java For Dummies, 4th Edition

reading decimal numbers from, 128–129
reading whole numbers from, 137
as reserved word, 106
System.in, 106

keyboard.nextLine method, 103, 104,
184, 401

keyboard-reading program, disk-reading
program and, 254

keyboard/screen program, 256–257
keywords. See also specific keywords

as case-sensitive, 81, 118
Java-English comparisons, 80–81
list of, 82
with no meaning in a Java program, 82
official, predetermined meaning of, 82
reserved words, 82

• L •
Landscaping For Dummies, 370
lastModified method, 428
layout

Eclipse IDE, 74
GridLayout, 406

leap year, isLeapYear variable, 227,
228, 230

leftReel variable, 302
length method, 428, 429
less than operator (<), 166
less than or equal to operator (<=), 166
letters. See also case sensitivity;

characters
alphabetical ordering of, 172

Levine, John R., 370
Library panel, Scene Builder window, 413
lineIn variable, 348
Linux

checking Java installation on, 38
filename extensions in, 25
installing Eclipse, 41
JRE Definition dialog, 46–47
tar.gz file, 30
troubleshooting problems with disk

files, 264
listFiles method, 330, 331

javac file, 15
javac.exe, 15, 19
java.com, downloading tools from, 22
javadoc comments, 88
javadoc program, 88
Javadocs, 20
java.exe, 19
JavaFX classes, 395, 407–413, 418
JavaFX projects

adding stuff to, 412–418
bare-bones

creating, 410–411
running, 411

java.lang package, 366
java.lang.System class, 366
java.util package, 365
java.util.Scanner class, 365
JButton, 394, 395
JDK (Java Development Kit)

choice between JRE and, 28–29
downloading latest version of, 24
online versus offline installation, 29

JFrame class
creating an instance of, 400–401
described, 398–400
extending, 403–405

JLabel class, 397
JLabel object, 397, 405–407
job listings, 426
JRE (Java Runtime Environment)

choice between JDK and, 28–29
configuring Java in Eclipse and,

44–45
in general, 27
Settings, 37–38

JRE Definition dialog, 45, 46
JRE System Library, 331

• K •
keyboard

getting input from, 104–105, 254, 315
program to echo keyboard input,

98–100
reading a String value from, 350

443443 Index

A Java Program, 99
Listing the Combinations, 303–304
A Little Experiment, 271–272
Making a Word Go Backward, 159
Making Change, 141
Making Use of the Code in Listing 19-1,

375–376
May the Best Team Be Displayed First,

189–190
The Mechanical Combining of Two

Loops, 278
A Method Declaration, 89
A Method That Returns a Value, 388
More Chips, Please, 359–361
A More Refined Version of the One-

Room Code, 316
A More Versatile Program for Kids and

Gumballs, 137
Nested if Statements, 207
Nice Try, But . . ., 249–250
No Extra Break for Kids or Seniors, 204
From One File to Another, 275
Please, Gimme a Break!, 225–226
Processing Purchases, 341–343
A Program to Display the Things

I Like, 63
A Program to Generate an Occupancy

Report, 312
Proud Winners and Sore Losers,

213–214
Pulling a Variable Outside of the main

Method, 368
Putting a Name in a String Variable,

349–350
Repeat Before You Delete, 296
Report on One Room Only, Please,

313–314
The Right Way to Display a Dollar

Amount, 362
Roll 7 or 11, 234–235
A Simple Java Program, 78
A Simplified Version of the Game

Twenty-One, 244
Slot Machine Symbols, 301–303
SnitSoft’s Grand Scam, 122

listings
Adding Interest, 382–383
An Account Class, 373
An Answer for Every Occasion, 218–219
An Attempt to Debug the Code in

Listing 18-3, 353
An if Statement, 179
Are You Paying Too Much?, 196
Aren’t You Lucky?, 188
Calling an Object’s Method, 354–355
Calling the addInterest Method, 383
Calling the Method in Listing 19-8,

388–389
In Case of a Tie . . ., 210–211
A Class with Two Methods, 380–381
Creating a Window with an Image in It,

396–398
Declaring a Variable Inside the main

Method, 368
Deleting All .txt Files, 329
Do You Have a Coupon?, 200–201
Doing It the Old Fashioned Way,

334–335
Extending Java’s JFrame Class, 403
A Faulty Password Checker, 351–352
A Few Lines in a Computer Program, 12
Finding the Number of Days in a Month,

227–228
George Boole Would Be Proud, 202–203
Getting a Double Value from the

Keyboard, 128
Hey! Is This a For-by-For?, 294–295
Horace Fletcher’s Revenge, 286
How the Display Method Behaves When

No One’s Looking, 374
How to Edit the Main.java File, 417,

421–422
How to Keep Four Kids from Throwing

Tantrums, 136
How to Prime a Loop, 251–252
I Know Everything, 183
I’m Repeating Myself Again (Again), 348
Investigating the Behavior of

toUpperCase, 156
It’s Warm and Cozy in Here, 167

444 Beginning Programming with Java For Dummies, 4th Edition

getting a username from an e-mail
address, 274–276

overview, 273
reworking existing code, 275
running your code, 276
solving the problem, 282–283
using, 292–293

no early bailout from, 238
priming, 245, 250–252
trying to get a username from an e-mail

address, 246–250, 274–275
while (while statements)

blocks and, 237
condition written first, 294–295
do statements and, 294–295
overview, 234–237
priming, 245, 249–252

• M •
Mac OS X

filename extensions in, 25
installing Eclipse, 41
versions, 34

Macs (Macintosh computers). See also
Mac OS X

checking Java installation on, 33–38
JRE Home field, 45–46

main identifier, 84
main method(s)

declaring a variable inside, 368
inside a class, 95
“Main method not found” message, 118
overview, 91–92
pulling a variable outside of, 368
sample code, 94
two, in one project, 337
variable declaration and, 127, 133

Main.java file, 416, 417, 420, 421
MakeChange class, 142
Managing Your Money Online For

Dummies, 370
marker bar, Eclipse IDE, 73
markers, 73
Math class, 429
menu button, Eclipse IDE, 72–73

Storing Occupancy Data in an Array,
326–327

A Template to Read Data from a Disk
File, 258–259

A Template to Write Data to a Disk
File, 259

That’s Much Better!, 282–283
This Is So Cool!, 381
Traveling Through Data Both Forward

and Backward, 322–324
Trying to Get a Username from an

E-Mail Address, 246–247
Using a Java Locale, 364–365
Using a Variable Declared Outside of a

for Loop, 290
Using Input and Output Files, 257
Using the boolean Type, 164
Using the Keyboard and the

Screen, 256
Using Your Purchase Class, 336
What It Means to Be a Chair, 338
What It Means to Be a Purchase, 335

literals, 84–85, 351
Lively Browser, 39
Locale class, 85, 364, 429
logic errors, 67–68
logical operators

example of, 195–196
mixing different, 203–205
overview, 194

long type, 151, 152
loops, 233–252

assembling the pieces of, 241
counting, 286–288
escape sequence and, 245
following the action in, 235–237
getting values for variables, 242–243
infinite, 243
inner, 277, 279–281
iterations of, 235, 236
jumping into, 249–250
within loops (nested loops), 273–283

checking for the end of a file, 277–279
creating useful code, 276–277
defined, 277

listings (continued)

445445 Index

header, 90
inheriting, 405
main

declaring a variable inside, 368
inside a class, 95
“Main method not found”

message, 118
overview, 91–92
pulling a variable outside of, 368
sample code, 94
two, in one project, 337
variable declaration and, 127, 133

object’s values as used by, 386–387
parameters and, 382
passing values to, 382–384
punctuation, 377
Scanner, 105, 138, 258, 268
static, 133, 357–359, 365, 366, 368
terminology describing, 90
using an object’s, 351–355

Microsoft Windows, 19
Microsoft Word, formatting in, 64
minus sign (-), 139
mkdir method, 428
modifier, abstract, 113
modulus operator, 140
month, finding the number of days in a,

227–231
mortgage program, sample, 53–58
multiplication, asterisk for, 139
MyFirstJavaClass.java file, 62, 63, 71, 72
MyFirstProject, 60–62, 66
MyFrame class, 403–405
myRandom.nextInt method, 185–188,

217, 220, 379, 383, 384
mySalary, 85
myScanner.useLocale method, 429

• N •
names

defined, 83
filenames, troubleshooting problems

with disk files, 264
folder, 270
of variables, 124

messages, error
compiler (compile-time), 65
EchoLine program

case sensitivity, 108–110
diagnosing a problem, 108–111
expecting, 107–108
omitting punctuation, 110
runtime error messages, 117–118
spelling errors, 115–117
why computers can’t fix, 111–115

expecting, 107–108
if statement, 181–182
logic, 67–68
unchecked runtime exceptions, 67
why computers can’t fix, 111–115

method body
definition of, 90
examining, 374–375

method calls
definition of, 90, 91
described, 91
example of, 92
getting values from, 387
semicolon at the end of, 93

method declaration
definition of, 90
described, 89–91

method headers
definition of, 90
examining, 373
example of, 93
working with, 385–386, 391

method name, described, 89
methods. See also specific methods

abstract, 113
assignments and, 129–130
body, 90
calling, 89–92, 375–377
classes with two, 380–381
constructors and, 402
creating, 372–373
defined, 88, 89
defining within classes, 371
dragging declarations outside of,

131–133
flow of control, 376–377

446 Beginning Programming with Java For Dummies, 4th Edition

comparison operators, 166
decimal

comparing, 166–167
defined, 127–128
division and, 139–140
reading from the keyboard,

128–129
types of, 151–152

double type, 127
formatting as currency, 363–365
grouping separators, 129, 168, 257
pseudorandom, 186
random, 184–186, 189, 235
turning into strings, 361–363
turning strings into, 359–361
with underscores, as literals, 85
whole

reading from the keyboard, 137–138
remainder and, 143
types of, 151
using, 135–136

• O •
object code. See also code

defined, 14
in general, 17
relationship between source code

and, 15
object-oriented programming (OOP)

defined, 95, 333
equals method and, 356
FAQ, 345

objects
from classes, 338–340
creating several, 341–343
differences between classes and, 338
explained, 344
instances and, 340, 341
questions and answers about, 345
references to parts of, 341
self-filling, 380
terminology, 340–341
using methods of, 351–355

nested loops (loops within loops)
checking for the end of a file, 277–279
creating useful code, 276–277
defined, 277
getting a username from an e-mail

address, 274–276
overview, 273
reworking existing code, 275
running your code, 276
solving the problem, 282–283
using, 292–293

nesting
enhanced for loops, 303–307
if statements, 206–209

NetBeans IDE, downloading, 29
new File expression, 260, 270, 298, 329
New File statement, in Eclipse, 262,

297, 298
New Java Class dialog, Eclipse,

61–62, 101
New Java Project dialog, 60, 101, 410–411
next method, 105, 350
nextBoolean method, 228
nextDouble method, 105, 129, 130, 162,

168, 257
nextInt method, 104, 105, 138, 162, 163,

185–190, 193
nextLine method, 103–105, 184, 350, 401
nextWord method, 104
niceTotal variable, in NumberFormat

class, 363
non-static methods, 358–359
not (!), 194, 195
null (reserved word), 82
NullPointerException error message, 281
number formats, 85
number separators, 85
NumberFormat class, 85, 362–364
NumberFormatException message, 57, 58
NumberFormat.getCurrencyInstance

method, 429
numberOfDays, 228, 231
numbers

adding, 378
comparing, 165–172

447447 Index

parameters (parameter lists), 382
parentheses

calling a method, 377
calling an object’s method, 377
casting, 144
conditions using, 205–206
in if statements, 181
methods and, 161

parseInt method, 359, 361, 367, 428
password-checking program, 351–357
peers, in AWT components, 394
percent sign (%), as remainder

operator, 140
plus sign (+)

for addition, 139, 378
concatenating strings with, 378

portability, 19
postdecrement operator, 147
postincrement operator, 145–148
predecrement operator, 147
predetermined values, repeating with,

300–301
Preferences dialog, Eclipse IDE, 44, 46,

47, 259
preincrement operator (++), 144–145
price variable, 198
priming loops, 245, 250–252
primitive non-numeric types, 173
primitive numeric types (simple types),

151, 152
primitive types, reference types and, 335
println identifier, 84
println method, 102, 109, 269, 272.

See also System.out.println method
in Console view, 84

PrintStream type, 109, 116, 260, 261, 267,
268, 272

procedural programming, 406–407
ProcessNiceAccounts class, 385, 386
programmer, defined, 12, 130
programming, object-oriented

defined, 95, 333
equals method and, 356
FAQ, 345

occupancy report for Java Motel,
311–317

onePurchase variable, 339, 341, 357,
397, 400

online articles, 6
operating systems, 64-bit vs 32-bit

versions, 31
operators. See also specific operators

assignment, 147–150
comparison, 166
conditional, 229–231
creating new values by applying,

139–140
decrement, 144, 148
logical, 194
modulus, 140
postincrement, 145–148
predecrement and postdecrement, 147
preincrement, 144–145

or operator (||), 194, 195
Oracle, Java’s keywords created by, 82
Oracle website

advice to check often, 23
downloading tools from, 22
overview, 425

OS X, Java installation, 33–34
OtherStatements place-holder, 180
out identifier, 84
out variable, 366, 367

• P •
pack method, 399
Package Explorer, Eclipse

displaying all files and folders, 331
menu button, 73
running a Canned Java Program, 55–56
toolbar, 72
writing and running your program,

60–61
packages

default, 61
Eclipse IDE, 61
import declarations and, 365–366

448 Beginning Programming with Java For Dummies, 4th Edition

examples, 85–86
exclamation point (not, negative, or no

way), 194, 195
if statements, 181
omitting, 110
parentheses

calling a method, 377
calling an object’s method, 377
casting, 144
conditions using, 205–206
in if statements, 181
methods and, 161

quotation marks
curly (“”), 64
double, for literals, 351
reading characters and, 162–163
straight (“”), 64

semicolons
after for statements, 289
ending statements with, 93
errors, 112
in if statements, 181, 182

too much, 111
Purchase class, 336, 340, 341, 343–345,

397, 400, 401
purchase program, 333–345

• Q •
question mark colon (? :) conditional

operator, 230
quick fixes, Eclipse editor, 65, 109, 110,

112, 113, 403
quotation marks

curly (“”), 64
double, for literals, 351
reading characters and, 162–163
straight (“”), 64

• R •
Random class, 185–187, 193
random generation

myRandom.nextInt method, 185–188,
217, 220, 379, 383, 384

programming languages, 13. See also
Java language

programs (code). See also Java
programs; listings

to Display the Things I Like, 63
importing this book’s, 48–50
object

defined, 14
in general, 17
relationship between source code

and, 15
overview, 11–13
process of creating, 14
reusing, 20
running

on almost any computer, 3
Canned Java Program, 53–58
overview, 15–19
projects that contain two Java source

files, 337
separating your programs from this

book’s, 59
sample, 11–12
translating into zeros and ones,

14–17, 126
prompt

defined, 130
user’s input and, 130–131

pseudorandom numbers, 186
public, as keyword, 81
punctuation

commas, adding extra, 111
for comments, 87
curly braces

acting like a box, 86
in blocks, 191, 237
cascading if statements and, 212
in classes, 95
missing, in if statements, 182
statements in, 235, 237, 238
too many, 114–115
use of, 85–86

equal signs
accidentally typing two, 116
double (==), comparisons with, 166,

188, 354, 355

449449 Index

typing and running your own code, 58
writing and running your program,

60–66
runtime error messages, 117–118

• S •
sample programs, this book’s. See also

listings
importing, 26, 48–50

Scanner class
described, 106
findWithinHorizon method, 105
fully qualified name of, 106, 365
java.util package, 365
nextDouble method, 105, 130
nextLine method, 105
NumberFormat class and, 429

Scanner methods, 105, 138, 258, 268
Scene Builder, 408–409, 413, 414, 416–420
SDK, Java (Java Software Development

Kit). See JDK (Java Development Kit)
semicolon (;)

after for statements, 289
ending statements with, 93
errors, 112
in if statements, 181, 182

serialVersionUID, 403
setDefaultCloseOperation method, 398,

399, 404
setReadOnly method, 428
setVisible method, 398, 400, 404
short type, 152
Show Line Numbers check box, 65
Show View dialog box, Eclipse IDE, 54, 74
simple types (primitive numeric types),

151, 152
Simula language, 95
Sindell, Kathleen, 370
Slashdot, websites, websites, 426
slot machines, Java program about,

301–303
smallLetter variable, 154, 156–158
Smalltalk language, 95
SnitSoft, 121–123

of numbers, 184–186, 189, 235
of three-letter names, 372, 378–379

RangeOfValues array, 302, 303, 328, 330
.rar files, 26
rawData.txt file, 257, 260–262, 264–266
reading

assignment statements from right to
left, 124

characters, 162–163
decimal numbers from the keyboard,

128–129
from disk files, 254–256, 268
input from a disk, 258–259
int values, 138
whole numbers from the keyboard, 137

reference types, 335, 354
regular expressions, 161
remainder operator, 140, 143, 169
remainders, finding, 140–144
RepeatAfterMe class, 119
repeating instructions, 234–235
repeating statements (for statements),

286–288
replaceAll string, 430
reserved words, 82
response from the user, deleting files

and, 295–299
return types, 387–390
return values, 387–390
reversing, four-letter words, 159–160, 233
RoboJeeves, 97–98
role-playing the computer, 279, 283
root directory, 329, 330
Root.fxml file, 412, 413, 416, 420
Ross, Rick, 187
.rtf extension, 262, 313
running code (programs). See also Java

programs; listings
on almost any computer, 3
Canned Java Program, 53–58
overview, 15–19
projects that contain two Java source

files, 337
separating your programs from this

book’s, 59

450 Beginning Programming with Java For Dummies, 4th Edition

switch
case clauses, 219–220, 223
default clause, 220–221
defined, 218
fall-through and, 224–229
form of, 221
Java versions, 222
listing, 218–219
overview, 217–218

turning into comments, 87
while

blocks and, 237
condition written first, 294–295
do statements and, 294–295
overview, 234–237
priming, 245, 249–252

static import declarations, 192, 212, 367
static methods, 133, 357–359, 365,

366, 368
static out variable, 367
String class

example, 348
overview, 347–348, 429

String type
comparisons with, 172
use of, 157

String values, displaying, 351
string variables, 349–350
String.java file, 347–348, 371
strings

comparing, 354–355
concatenating, 378
empty, 378
in general, 177
reading and writing, 350–351
turning into numbers, 359–361
turning numbers into, 361–363

strings identifier, 84
Swing classes, 394, 395, 403
switch statements

case clauses, 219–220, 223
default clause, 220–221
defined, 218
fall-through and, 224–229
form of, 221

SnitSoft CD-ROM, 128
SnitSoft class, 122
SomeStatements place-holder, 180, 208
sort method, 358, 368, 369
sorting, checks, 368–370
source code

defined, 14
relationship between object code

and, 15
SourceForge, 426
spaces, alternative to, 119
spelling errors, 109, 115–117
Spotlight, Java Preferences, 35
square brackets, in arrays, 320
square brackets ([]), 85, 320
stacked views, 71
Standard Widget Toolkit (SWT), 395
statements

for. See also for loops
example listing, 286–288
structure of, 288–289

assignment
initialization and, 198
order of, 138
overview, 129–130
reading from right to left, 124
understanding, 124

blocks of, 237
compound, 181, 182, 237
for counting loops, 286–288
definition of, 92
do, 294, 299
ending with a semicolon, 93
expressions and, 148
if

blocks, 191
cascading, 209–212
complete program with, 183–185
error messages, 181–182
format of, 179–180
indenting, 185–187
introduction to, 179
nesting, 206–209
sample programs, 179, 183, 188–190
without an else clause, 187

451451 Index

three-letter names, random generation
of, 372, 378, 379

throws clause, 260, 266
TicketPrice program, 196, 198–200
toolbar, 72
total variable, in NumberFormat

class, 363
toUpperCase method, 154–156
traditional comments, 87
tree variable, 369
troubleshooting problems with disk files,

264–266
true (reserved word), 82
Twenty-One card game, 238, 239,

243, 244
Twitter

author’s handle, 7
author’s page, 23

.txt extension, 313

.txt files, deleting all, 329–331
typefaces used in this book, 2
types (of variables)

defined, 123, 127
difference between a type’s name and

the type’s values, 303
primitive, 151
return, 387–390

• U •
unchecked runtime exceptions, 67
uncompressing a file, 26
underscore character (_)

in class names, 62
numbers with, as literals, 85

Unicode, 173
UNIX For Dummies: Quick

Reference, 370
unzipping a file, 26
upper case. See capitalization
uppercase letters, 154–156, 158
userInput variable (string), 352, 353,

356, 359

Java versions, 222
listing, 218–219
overview, 217–218

Symbol type, 302
Symbol.values() expression, 302
syntax coloring (syntax highlighting),

21, 64
System class

java.lang package, 366
static out variable, 367

system identifier, 84
System Preferences, on Macs, 35–36
System.in, defined, 106
System.out method, 367
System.out variable, static, 366
System.out.println method

calling an object’s methods, 357
in complete program, 183–184
described, 92, 93
EchoLine program, 103
error messages, 115
in general, 63, 92
with nothing in the parentheses, 142
postincrement operator and, 146
sample code, 94
wrapping displayed lines, 125

• T •
tab groups, 71–72
tab stops, inserting, 245
tabs, Eclipse IDE, 71
tar.gz files, 26
template, code, 258, 259
Terminal window, on Linux

computers, 38
“test, then print, then input” strategy,

249–250
text-based programs, 53, 393
TextEdit program, 262, 313
TextField control, 412, 413, 417–421
ThingsILike class, 78, 79, 83, 85, 87, 95
ThingsILike program, 77, 78, 85, 86,

92, 94

452 Beginning Programming with Java For Dummies, 4th Edition

views, Eclipse
active, 72
bar of buttons at the top of, 72
close button, 73
Console view

disk files and, 256
displaying text in, 254
NumberFormatException message

in, 58
overview, 74
println method and, 84

described, 70–71
Package Explorer, 73
stacked, 71

virtual machine, defined, 14
Visual Basic, sample code, 13
void keyword, 81

• W •
Walheim, Lance, 370
warnings

compile-time, 68
paying attention to, 68

websites
InfoQ, 426
job listings, 426
Oracle

advice to check often, 23
downloading tools from, 22
overview, 425

SourceForge, 426
support, 7
this book’s, 23, 102, 425
unintuitive names for software

downloads, 32
Welcome screen, Eclipse IDE, 25, 42,

43, 56
whatsLeft variable, 141, 142
while statements (while loops)

blocks and, 237
condition written first, 294–295
do statements and, 294–295
overview, 234–237
priming, 245, 249–252

username
reaching the end of the, 279–280
trying to get a, from an e-mail address,

246–250, 274–275
users, defined, 130
user’s input, prompt and, 130–131

• V •
values

in arrays, 320–321
assigning to variables, 131, 165, 380
defined, 123
double

avoiding using for money, 143
casting, 144
dividing, 140

handing off, 384–385
method calls for, 387
passing to methods, 382
return, 387–390

variable declarations
combining, 133–134
defined, 127

variable names, defined, 124
variables. See also specific variables

assigning values to, 131, 165, 380
boolean

defined, 164
examples of using, 164–165, 201–203
overview, 164–165

with combined declarations, 142
defined, 122
initialization of, 131–132, 198
moving from place to place, 131–133
reusing, 157–160
types of

defined, 123, 127
difference between a type’s name and

the type’s values, 303
primitive, 151
return, 387–390

using, 121–124
Variables view, Eclipse IDE, 170
versions, Java, 28, 34

453453 Index

NumberFormatException
message in, 58

overview, 74
println method and, 84

display of this book’s Java projects, 50
launching Eclipse and, 25
overview, 69
running Eclipse for the first time, 42, 43

working directory, 329
workspace, Eclipse

place on your hard drive for, 410
switching to a different, 59

Workspace Launcher dialog, Eclipse, 42,
54, 55, 59

wrapping displayed lines, 125
Write Once, Run Anywhere model of

computing, 19
writing, to disk files, 268–271

• X •
XML (eXtensible Markup Language),

406–408

• Y •
yearlyInterest variable, 390
yellow marker, Eclipse editor, 68, 403
Young, Margaret Levine, 370

• Z •
zeros and ones, 14–17, 126
.zip files, 26, 41, 49

whole numbers
reading from the keyboard, 137–138
remainder and, 143
types of, 151
using, 135–136

WhoWins type, 212–216
Wilson, Alan, 187
windows

declaratively describing, 406–407
displaying on computer screen,

395–398
Eclipse, 69
jumping among, 21

Windows, Microsoft
installing Eclipse, 40–41
JRE Home field, 45

Windows (XP and newer)
checking Java installation on, 33
filename extensions in, 25

Windows 7
checking Java installation on, 33
filename extensions in, 25

Windows 8
checking Java installation on, 32
filename extensions in, 25

Windows environment, 19
Windows Notepad, 262, 313
Windows XP

checking Java installation on, 33
filename extensions in, 25

word lengths, 30–32
word processing, 20
word-processing programs, editor

and, 21
workbench, Eclipse. See also specific

parts
Console view

disk files and, 256
displaying text in, 254

Notes

Sample	For	Dummies	•	0000-0	Index.1	•	Index	•	Proof	1	•	PLT	•	12/20/99	•	P454

Notes

Notes

Sample	For	Dummies	•	0000-0	Index.1	•	Index	•	Proof	1	•	PLT	•	12/20/99	•	P456

About the Author
Dr. Barry Burd has an M.S. in Computer Science from Rutgers University and
a Ph.D. in Mathematics from the University of Illinois. As a teaching assistant
in Champaign-Urbana, Illinois, he was elected five times to the university-wide
List of Teachers Ranked as Excellent by their Students.

Since 1980, Dr. Burd has been a professor in the Department of Mathematics
and Computer Science at Drew University in Madison, New Jersey. When he’s
not lecturing at Drew University, Dr. Burd leads training courses for professional
programmers in business and industry. He has lectured at conferences in the
United States, Europe, Australia, and Asia. He is the author of several articles
and books, including Java For Dummies and Android Application Development
All-in-One For Dummies, both published by John Wiley & Sons, Inc.

Dr. Burd lives in Madison, New Jersey with his wife and two kids (both in
their twenties, and mostly on their own). As an avid indoor enthusiast,
Dr. Burd enjoys sleeping, talking, and eating.

Dedication
For Harriet, Sam and Jennie, Sam and Ruth, Abram and Katie, Benjamin and
Jennie.

Author’s Acknowledgments
Author’s To-Do List, February 13, 2014:

Item: Send chocolates to Paul Levesque (the book’s project editor) and
Melba Hopper (the book’s copy editor). As anyone who reads Chapter 4
learns, chocolate is one of the most precious commodities on earth. So when
I give chocolate, I give it thoughtfully and intentionally.

Item: Have a plaque erected in honor of Connie Santisteban, your acquisi-
tions editor at Wiley. While you worked on other projects, Connie kept on
insisting that you write this book’s fourth edition. (Sure, you wanted a long
vacation instead of another book project, but who cares? She was right; you
were wrong.)

Item: Send a thank-you note to tech editor Russ Mullen who helped polish
your original work and, miraculously, didn’t make a lot of extra work for you.

Item: Visit Frank Thornton, Bonnie Averbach, and Herbert Putz at Temple
University. Thank them for steering you to a career as a professor. In any
other career, you’d have no time left to write. (And by the way, while you’re
in Philly, don’t forget to stop for a cheesesteak.)

Item: Send e-mail to Gaisi Takeuti at the University of Illinois, and to William
Wisdom and Hughes LeBlanc at Temple University. Thank them for teaching
you about Symbolic Logic. It’s made your life as a computer scientist and
mathematician much richer.

Item: Spend more time with your family. (Remind them that you’re the guy
who wandered around the house before you started writing books.) Renew
your pledge to clean up after yourself. Don’t be so high-strung and finish each
sentence that you start. Remember that you can never fully return the love
they’ve given you, but you should always keep trying.

Publisher’s Acknowledgments

Senior Acquisitions Editor: Constance
Santisteban

Senior Project Editor: Paul Levesque

Copy Editor: Melba Hopper

Technical Editor: Russ Mullen

Editorial Assistant: Annie Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Erin Zeltner

Cover Image: Spanic/iStockphoto

Start with FREE Cheat Sheets
Cheat Sheets include
	 •	Checklists
	 •	Charts
	 •	Common	Instructions
	 •	And	Other	Good	Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
	 •	Videos
	 •	Illustrated	Articles
	 •	Step-by-Step	Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
	 •	Digital	Photography
	 •	Microsoft	Windows	&	Office
	 •	Personal	Finance	&	Investing
	 •	Health	&	Wellness
	 •	Computing,	iPods	&	Cell	Phones
	 •	eBay
	 •	Internet
	 •	Food,	Home	&	Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/beginningprogrammingwithjava

www.facebook.com/fordummies
www.twitter.com/fordummies

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,

Dummies makes learning easier.

At home, at work, or on the go,
Dummies is here to help you
go digital!

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	How to Use This Book
	Conventions Used in This Book
	What You Don’t Have to Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with Java Programming
	Chapter 1: Getting Started
	What’s It All About?
	From Your Mind to the Computer’s Processor
	Your Java Programming Toolset

	Chapter 2: Setting Up Your Computer
	If You Don’t Like Reading Instructions . .
	Getting This Book’s Sample Programs
	Setting Up Java
	Setting Up the Eclipse Integrated Development Environment
	What’s Next?

	Chapter 3: Running Programs
	Running a Canned Java Program
	Typing and Running Your Own Code
	What’s All That Stuff in Eclipse’s Window?

	Part II: Writing Your Own Java Programs
	Chapter 4: Exploring the Parts of a Program
	Checking Out Java Code for the First Time
	The Elements in a Java Program
	Understanding a Simple Java Program

	Chapter 5: Composing a Program
	Computers Are Stupid
	A Program to Echo Keyboard Input
	Expecting the Unexpected

	Chapter 6: Using the Building Blocks: Variables, Values, and Types
	Using Variables
	What Do All Those Zeros and Ones Mean?
	Reading Decimal Numbers from the Keyboard
	Variations on a Theme

	Chapter 7: Numbers and Types
	Using Whole Numbers
	Creating New Values by Applying Operators
	Size Matters

	Chapter 8: Numbers? Who Needs Numbers?
	Characters
	The boolean Type
	The Remaining Primitive Types

	Part III: Controlling the Flow
	Chapter 9: Forks in the Road
	Decisions, Decisions!
	Making Decisions (Java if Statements)
	Variations on the Theme

	Chapter 10: Which Way Did He Go?
	Forming Bigger and Better Conditions
	Building a Nest
	Enumerating the Possibilities

	Chapter 11: How to Flick a Virtual Switch
	Meet the switch Statement
	Using Fall-Through to Your Advantage
	Using a Conditional Operator

	Chapter 12: Around and Around It Goes
	Repeating Instructions Over and Over Again (Java while Statements)
	Thinking about Loops (What Statements Go Where)
	Thinking about Loops (Priming)

	Chapter 13: Piles of Files: Dealing with Information Overload
	Running a Disk-Oriented Program
	Writing a Disk-Oriented Program
	Writing, Rewriting, and Re-rewriting

	Chapter 14: Creating Loops within Loops
	Paying Your Old Code a Little Visit
	Creating Useful Code

	Chapter 15: The Old Runaround
	Repeating Statements a Certain Number of Times (Java for Statements)
	Using Nested for Loops
	Repeating Until You Get What You Need (Java do Statements)
	Repeating with Predetermined Values (Java’s Enhanced for Statement)

	Part IV: Using Program Units
	Chapter 16: Using Loops and Arrays
	Some Loops in Action
	Reader, Meet Arrays; Arrays, Meet the Reader
	Working with Arrays
	Looping in Style
	Deleting Several Files

	Chapter 17: Programming with Objects and Classes
	Creating a Class
	From Classes Come Objects
	Another Way to Think about Classes

	Chapter 18: Using Methods and Variables from a Java Class
	The String Class
	Using an Object’s Methods
	Static Methods
	Understanding the Big Picture

	Chapter 19: Creating New Java Methods
	Defining a Method within a Class
	Let the Objects Do the Work
	Passing Values to Methods
	Getting a Value from a Method

	Chapter 20: Oooey GUI Was a Worm
	The Java Swing Classes
	The Swing Classes: Round 2
	Code Soup: Mixing XML with Java
	Adding Stuff to Your JavaFX Project
	Taking Action

	Part V: The Part of Tens
	Chapter 21: Ten Websites for Java
	This Book’s Website
	The Horse’s Mouth
	Finding News, Reviews, and Sample Code
	Looking for Java Jobs
	Everyone’s Favorite Sites

	Chapter 22: Ten Useful Classes in the Java API
	Applet
	ArrayList
	File
	Integer
	Math
	NumberFormat
	Scanner
	String
	StringTokenizer
	System

	Index
	About the Author

